Acta Mechanica Slovaca 2009, 13(4):74-79 | DOI: 10.2478/v10147-010-0040-2

Experimental Analysis of Complex Chaotic System by Hilbert-Huang Transform Usage

Josef Kokeš, Miroslav Kopecký

The paper demonstrates one promising algorithm for adaptive prediction of trajectory transitions between local basins of attraction of deterministic chaotic systems using Hilbert-Huang Transform. The expected transitions of higher dimensional chaotic systems are predicted by low order intrinsic modal functions, obtained from state variables by HHT. The behavior of chaotic systems in the state-space is transformed to system behavior in an approximated parameter-space obtained by Huang algorithm. Also a brief comparison to adaptive method using quadratic neural unit (QNU) with forcing inputs, introduced by Bukovský [2], is shown.

Keywords: Lorenz's attractor, Hilbert-Huang Transform, adaptive prediction, deterministic chaotic systems

Published: October 31, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kokeš, J., & Kopecký, M. (2009). Experimental Analysis of Complex Chaotic System by Hilbert-Huang Transform Usage. Acta Mechanica Slovaca13(4), 74-79. doi: 10.2478/v10147-010-0040-2
Download citation

References

  1. Anderle F., Hilbert-Huangova transformace, Diplomová práce FS ČVUT v Praze, 2008.
  2. Bukovský I., Modeling of Complex Dynamic Systems by Nonconventional Artificial Neural Architectures and Adaptive Approach to Evaluation of Chaotic Time Series, Ph.D. THESIS, Faculty of Mechanical Engineering, Czech Technical University in Prague, 2007.
  3. Bukovský I., Bila J., Gupta M.M., Hou Z.G., New Neural Architectures and New Adaptive Evaluation of Chaotic Time Series, Tutorial for 2008 IEEE International Conference on AAutomation and Logistics, August 2008, Qingdao, China, 2008, http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial.htm.
  4. Bukovský I., Anderle F., Smetana L., Quadratic Neural Unit for Adaptive Prediction of Transitions Among Local Attractors of Lorenz System, Proceedings of the IEEE International Conference on Automation and Logistics, Qingdao, China, September 2008, ISBN 978-1-4244-2503-7. Go to original source...
  5. Bursíková S., HHT a glykemická křivka, Sborník konference Inteligentní systémy pro praxi, Lázně Bohdaneč, 2007, ISBN 978-80239-8245-9.
  6. Kopecký M., Hilbert-Huang Transformation and its application in optical flow evaluation, STC, 2009.
  7. Verner M., EMD - základ pro HHT, Inteligentní systémy pro praxi, Lázně Bohdaneč, 2007, ISBN 978-80239-8245-9.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.