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ABSTRACT

The paper demonstrates one promising algorithm for adaptive prediction of trajectory
transitions between local basins of attraction of deterministic chaotic systems using
Hilbert-Huang Transform. The expected transitions of higher dimensional chaotic sys-
tems are predicted by low order intrinsic modal functions, obtained from state variables
by HHT. The behavior of chaotic systems in the state-space is transformed to system
behavior in an approximated parameter-space obtained by Huang algorithm. Also a
brief comparison to adaptive method using quadratic neural unit (QNU) with forcing
inputs, introduced by Bukovsky [2], is shown.
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INTRODUCTION

Complex and chaotic systems of higher order are the most challenging problem to re-
search of control systems. There are several possibilities how to understand them. One
of these is method developed by Bukovsk et al [2] and shown later. Our new method
will be explained based on Lorenz attractor example [4]. The Lorenz attractor was
postulated by Edward Lorenz in 1963. It is defined by a system of non-linear three-
dimensional dynamic equations defined as follows:
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These equations represent physical meaning of forced convection in atmosphere. Vari-
able ¢ is the Prandtl constant and r represents Rayleigh number. Common values in
atmosphere, 6 = 10, r = 28 and b = 8/3 produce chaotic behavior with randomly ro-
tation changes. The solution of equation set is well known “butterfly” pattern. The
butterfly in 3-D is shown in Fig. 1.

Long time divergence is visible in Fig. 1. This case is called as “strange attractor”.
W. Tucker proved that strange attractor” is a fractal. Grassberger (1983) estimated its
Hausdorff dimension as 2.06 & 0.01. Correlation dimension was estimated to 2.05 £
0.01.

Lorenz attractor is a case of well examined example of strange attractor” and we are
able to describe its basic features as follows:

e “Strange attractor” consists of continuous curve in phase space. The curve starts at
known starting point and its endpoint is undefined. It means, the final length is not
defined. The whole curve fits in a well defined region in phase space. It never crosses



bounds of this region.
e [t never intersects, copies or repeats.

e “Strange attractor” has all features of fractals. It
means the structure is repeating in scales.

e The curve flow in space is random, chaotic and
unpredictable.

Fig. 1: 3-D Lorenz attractor solution.

NON-LINEAR DERERMINISTIC DY-
NAMIC SYSTEM

Lorenz system is used as an example of non-linear
chaotic system. We can compute the trajectory from
big amount of known points, but we are not able
to predict it in general. It means we are not able
to predict when attractor goes to turn over. In this
meaning there is only possibility to find attractor
branches, but not to predict them. Evaluation is pos-
sible e.g. using variable y. We can see that variable
y changes its sign between both branches. Value
y > O represents right branch and y < 0 is represent-
ing the left one. The achievement of y = 0 value we
can understand as a moment of turn-over. For better
understanding have a look at Fig. 2.
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Fig. 2: Branchesy > 0ay <O.

Let us have the following task: we have non-
linear chaotic deterministic dynamic system whose
parameters are completely unknown. We only
know its behavior for several times in the past.
Based on this incomplete information we need to
predict turn over moments.

We can demonstrate an appropriate solution by
using Lorenz system. Let us solve this problem us-
ing time dependency of z(¢), as displayed in green
line in Fig. 3. Values x(¢) or y(z) could be chosen
too, but as you can see from Fig. 3, prediction of
z(t) is more problematic.

Fig. 3: Time lines of state variables x,y,z.

Before we start, it is good to note that every
common method is failing in said prediction. We
can take z(t) from Fig. 3 as an example. It looks
like sine wave at the first look and so it can mislead
us to use Fourier transform for analysis.

Spectral density using FFT
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Fig. 4: Spectral denstity of curve z(t) from Fig. 3.

Should we apply Fourier transform at our sig-
nal; we would receive from 9 to 10 dominant fre-
quencies. The result is displayed on Fig. 4. This
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analysis was done via Excel (including the phase,
which is not displayed here. Other important point
is that its amplitude is not normalized).

It is evident that FT cannot be used for predict-
ing of turn-over points. Inverse transformation IFT
results in a course that is completely different from
original z(¢). The main problems are linearity and
stationary. Fourier transform is designed for linear
and stationary a system, which is not the case of
Lorenz system. Lorenz attractor is completely fail-
ing in this meaning.

HILBERT-HUANG TRANSFORM

At the first we have to notify Hilbert-Huang trans-
form is not transform in the common mathematical
meaning. Hilbert-Huang transformation can be bet-
ter described as a semi-empiric algorithm. Whole
process consists from two main steps. In the first
step we reduce any given (measured) data into a col-
lection of intrinsic mode functions (IMF) using the
empirical mode decomposition method (EMD). In
the second step we are able to apply Hilbert trans-
form to all obtained intrinsic mode function com-
ponents.

The main procedure of extracting IMFs is called
sifting. The sifting is an iterative procedure. We ob-
tain intrinsic mode functions (IMFs) as the result of
this procedure.

Measured (input) data represent a wideband sig-
nal, which is very hard to understand. Sometimes it
is even impossible. This is the reason why HHT is
using sifting process. Sifting in first step of HHT
extracts from signal relatively narrow-band IMF
functions, which can improve understanding to the
whole system. More detailed explanation you can
find in related works [1], [5], [7] and [6].

For decomposition of signal z(¢) is used own
sifting program. Routine been used for some time
and it will be provided to anybody on request. In
case of z(¢) in Lorenz attractor, the whole signal
was decomposed to only two IMFs plus residues,
while standard deviation did not come over value
0.16. All results are shown in Fig. 5 and 6.

IMFO is displayed in Fig. 5 by bold blue line.
Value oscillates around zero (note that Y axis is on
the right side) and copies oscillation of input sig-
nal z(r). z(¢) is shown by a thinner line. IFMO is
changing too much to be predicted.

We decided to use the next function IMFI.
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IMF1 is displayed in Fig. 6 in the same manner
as previous one.

Fig. 6: HHT result — IMF1 function.

Idea which led us to prediction of whole process
is following: Lorenz system is turning over between
both branches. This change is systematic. That
means this change should be hidden somewhere in
the history of process. In fact, that we do not see
anything on z(¢) curve flow, does not imply that this
kind of information does not exist inside. Interest-
ing question is whether this hidden information
comes from z(7) into corresponding IMFs, when
sifted by HHT?

Turn over moment between both Lorenz
branches is characterized by zero crossing of vari-
ables y and x. As is visible from Fig. 3, this is
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Table 1: Zero crossing times.

Zero crossing time (x 10 000)

y+ 1358 | 2533 | 3684 | 4289 | 4895 | 5794 | 6399 | 7297 | 7639 | 8808

y— | 2196 | 3381

3987 | 4594 | 5214 | 6100 | 6728 | 7364 | 8471 | 9659

IMF+ | 1305 | 2495 | 3305 | 3920 | 4515 | 5170 | 5990 | 6680 | 7595 | 8770

IMF- | 1555 | 2725 | 3680 | 4215 | 4825 | 5435 | 6340 | 6950 | 7830 | 9020

err % | 4% 2% | 10% | 9%

8% | 11% | 6% 8% 1% 0%

err% | 29% | 19% | 8% 8%

7% | 11% | 6% 6% 8% 7%

not applicable to z(#). But IMF extracted from z(r)
are oscillating around zero level. Let us try to com-
pare zero crossing moments of IMF and turn-over
moments of Lorenz attractor. For more details look
at Table 1. On lines y+ and y— are zero crossing
times for variable y(¢), found by numerical solution.
Row y+” shows times of cossing zero from nega-
tive to positive, row “y—"" shows times of crossing
zero from positive to negative direction. Be aware
that time is multiplied by constant 10 000.

On lines IMF+ and IMF- are time crossing val-
ues of empirical mode function IMF1. Time is eval-
uated from the chart.

Interesting moment is coming from this chart.
There is eye-catching accordance between variable
y(t) and IMFI and it is clearly visible. Zero cross-
ing moments of y(z) and 1IMFI seem to be equal.
The difference is significant only at the very begin-
ning. The general difference is around 8%. Error of
up to 29% at the start is caused by border effects of
sifting algorithm of HHT.

QNU (QUADRATIC NEURAL UNIT)
AS COMMON OSCILLATORY UNIT

Similar prediction was done by Bukovsky and com-
pany by using different kind of method. In this
case, quadratic neural units (QNU) were used. Two
dominant frequencies were chosen as the input.
These frequencies were represented in Lorenz sys-
tem flow. Neural network was trained to Lorenz
attractor behavior with specific values. Numbers of
values were similar as we did use in our case men-
tioned above. The result of the experiment discov-
ered dramatic changes of QNU weights before turn

over point. These changes are coming close to time
of real one. Based on this fact these changes could
be taken as type of prediction too.

Adaptive method introduced by Bukovsky
has advantage because of practical verification.
Quadratic neural units could be used for predic-
tion of higher order systems. The disadvantage of
this method in real time usage could be parameters
setup. These parameters need to be defined for the
following system adoption. This adoption has to
be done as the first before real time usage. Other
disadvantage could be parameter of QNU detection
sensitivity.

HHT method is easier for evaluation based on
example. Acceptable results are coming from? But
we need to be aware around border effects. These
effects still do not allow a real time usage of this
method. Acceptable results are coming only in the
middle of time interval. For real time usage we
need to evaluate historical data as first point. IMF
functions can be evaluated then. In this case results
of HHT method become similar to quadratic neural
unit training.

CONCLUSION
New hopeful method is mentioned and described in
this article. This method could help in behavior pre-
diction of non linear deterministic dynamic system.
Based on example there are explained steps of us-
age and its principle. HTT method results are eval-
uated against the results of QNU one.

Main disadvantage of HHT method usage are
unsolved questions around border conditions. We
intend to solve this issue in the future.
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