Acta Mechanica Slovaca 2024, 28(3):26-34 | DOI: 10.21496/ams.2024.012

Theoretical and Numerical Study on the Dynamic Behaviour of a Rotor with a Conical Steel Shaft

Rachid Zahi1, *, Habib Achache2
1 Relizane University Algeria
2 Institute of maintenance and industrial safety, University of Oran2 Mohamed Ben Ahmed, B.P 1015 El M'naouer 31000 Oran, Algeria, Laboratory of Physical Mechanics of Materials Sidi Bel Abbes, Algeria

This work proposes a theoretical and numerical study on the behaviour of the tapered rotor. The characteristics of the elements of the rotor are determined; it is to evaluate the expressions of the kinetic and potential energies as well as the virtual work corresponding to the basic elements disk, shaft, bearing for the two conical models by applying the method of the finite elements. Numerical simulation allows us to observe and determine modal analysis and natural values.

Received: April 15, 2024; Revised: May 6, 2024; Accepted: May 22, 2024; Published: September 15, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zahi, R., & Achache, H. (2024). Theoretical and Numerical Study on the Dynamic Behaviour of a Rotor with a Conical Steel Shaft. Acta Mechanica Slovaca28(3), 26-34. doi: 10.21496/ams.2024.012
Download citation

References

  1. Nelson, H. D. and McVaugh, J. M. (1976). The Dynamics of Rotor-Bearing Systems Using Finite Elements. Journal of Engineering for Industry, 98(2), 593-600. https://doi.org/10.1115/1.3438942 Go to original source...
  2. Gash R. (1976). Vibrations of large turbo-Rotors in fluid film bearings on an Elastic Foundation. Journal of Sound and Vibration, (47)1,53-73. https://doi.org/10.1016/0022-460X(76)90407-7 Go to original source...
  3. Nelson, H. D. (1980). A Finite Rotating Shaft Element Using Timoshenko Beam Theory. journal of mechanical design. 102(4), 793-803. https://doi.org/10.1115/1.3254824. Go to original source...
  4. Ozguven, H.N. and Ozkan, Z.L. (1984). Whirl speeds and Unbalance Responses of multi-bearing Rotor using Finite Element. Journal of Vibration Acoustics Stress, and Reliability in Design. 106(1), 72-79. https://doi.org/10.1115/1.3269158. Go to original source...
  5. Ku, D. M. (1998). Finite element analysis of whirl speeds for rotor-bearing systems with internal damping. Mechanical Systems and Signal Processing. 12(5), 599-610. https://doi.org/10.1006/mssp.1998.0159. Go to original source...
  6. Rouch, K. E. and Kao, J. S. (1979). A tapered beam finite element for rotor dynamics analysis. J. of Sound and Vibration, 66(1), 119-140. https://doi.org/10.1016/0022-460X(79)90607-2. Go to original source...
  7. Archer, J.S. (2012). Consistent matrix formulation for Structural Analysis Using Finite Element Techniques. AIAA Journal, 3(10),1910-1918. https://doi.org/10.2514/3.3279. Go to original source...
  8. Greenhill, L.M., Bickford, W.B. and Nelson, H.D. (1985). A conical beam finite element for rotor dynamics analysis. Journal of Sound and Vibration, 107(4), 421-430. https://doi.org/10.1115/1.3269283. Go to original source...
  9. Jia, Z., Yang, Y., Zheng, Q. and Deng, W. (2022). Dynamicanalysis of jeffcott rotor under uncertainty based on chebyshev convex method, Mechanical Systems and Signal Processing, 167 Part B, 108603. . https://doi.org/10.1016/j.ymssp.2021.108603. Go to original source...
  10. Numanoğlu, H.M., Ersoy, H., Akgöz, B., and Civalek, Ö. (2022). A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Mathematical Methods in the Applied Sciences, 45(5), 2592-2614. https://doi.org/10.1002/mma.7942. Go to original source...
  11. Ahmed, O., El-Sayed, T. and Sayed, H. (2023). Finite element analyses of rotor/bearing system using second-order journal bearings stiffness and damping coefficients, Journal of Vibration and Control, 0(0), 1-24. https://doi.org/10.1177/10775463231204388. Go to original source...
  12. Ghayesh, M. H., Ghazavi, M. R. and Khadem, S. E. (2010). Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range. Structural Engineering and Mechanics, 34(4), 507-523. https://doi.org/10.12989/sem.2010.34.4.507. Go to original source...
  13. Jeong S. H. (2014). Krylov subspace-based model order reduction for Campbell diagram analysis of large- scale rotor dynamic systems. Structural Engineering and Mechanics, 50(1), 019-036. https://doi.org/10.12989/sem.2014.50.1.019. Go to original source...
  14. Fatehi, M. R., Ghanbarzadeh, A., Moradi, S. and Hajnayeb, A. (2018). Global sensitivity analysis improvement of rotor-bearing system based on the Genetic Based Latine Hypercube Sampling (GBLHS) method. Structural Engineering and Mechanics, 68(5), 549-561. https://doi.org/10.12989/sem.2018.68.5.549. Go to original source...
  15. Saldarriaga, M. V., Mahfoud, J., Steffen, V. Jr. and Hagopian, J. D. (2009). Adaptive balancing of highly flexible rotors by using artificial neural networks. Smart Structures and Systems, 5(5), 507-515. https://doi.org/10.12989/sss.2009.5.5.507. Go to original source...
  16. Liu, P., Chen, A. Y., Huang, Y. N., Han, J. Y., Lai, J. S., Kang, S. Ch., Wu, T. H., Wen, M. Ch. and Tsai, M.H. (2014). A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering. Smart Structures and Systems, 13(6), 1065-1094. https://doi.org/10.12989/sss.2014.13.6.1065. Go to original source...
  17. Muñoz-Abella, B., Ruiz-Fuentes, A., Rubio, P., Montero, L. and Rubio, L. (2020). Cracked rotor diagnosis by means of frequency spectrum and artificial neural networks. Smart Structures and Systems, 25(4), 459-469. https://doi.org/10.12989/sss.2020.25.4.459. Go to original source...
  18. Matthew, G. R., Nikola S. and Ian K. S. (2020). The Influence of Rotor Geometry on Power Transfer Between Rotors in Gerotor-Type Screw Compressors. journal of mechanical design, 142(7), 073501. https://doi.org/10.1115/1.4045508. Go to original source...
  19. Vinod Kumar, N., Prathapanayaka, R., Jai Maruthi, R., Swaroop, S. (2021). 3D Finite Element Rotor Dynamic Analysis of Turbine Test Rig Rotor-Shaft Systems. In: Rao, J.S., Arun Kumar, V., Jana, S. (eds) Proceedings of the 6th National Symposium on Rotor Dynamics. Lecture Notes in Mechanical Engineering. Springer, October, Singapore. https://doi.org/10.1007/978-981-15-5701-9_2. Go to original source...
  20. Shravankumar, C., Jegadeesan, K., Rao, T.V.V.L.N. (2021). Analysis of Rotor Supported in Double-Layer Porous Journal Bearing with Gyroscopic Effects. In: Rao, J.S., Arun Kumar, V., Jana, S. (eds) Proceedings of the 6th National Symposium on Rotor Dynamics. Lecture Notes in Mechanical Engineering. Springer, October, Singapore. https://doi.org/10.1007/978-981-15-5701-9_6. Go to original source...
  21. Gayen, D., Tiwari, R., Chakraborty, D. (2021). Thermo-Mechanical Analysis of a Rotor-Bearing System Having a Functionally Graded Shaft with Transverse Breathing Cracks. In: Rao, J.S., Arun Kumar, V., Jana, S. (eds) Proceedings of the 6th National Symposium on Rotor Dynamics. Lecture Notes in Mechanical Engineering. Springer, October, Singapore. https://doi.org/10.1007/978-981-15-5701-9_8. Go to original source...
  22. Lalanne, M. and Ferraris, G. (1998). Rotor-dynamics Prediction in Engineering. 1st edition, Wiley, New York.
  23. Genta, G., & Gugliotta, A. (1988). A conical element for finite element rotor dynamics. Journal of Sound and Vibration, 120(1), 175-182.‏ Go to original source...
  24. Rachid, Z., Abderahmane, S., Abdelmadjid, M., Noureddine, Z., & Kaddour, R. (2023). Dynamic analysis of a rotating tapered composite Timoshenko shaft. Steel and Composite Structures, 48(4), 429.‏
  25. Zahi, R., Sahli, A., Kaci, D., Bourada, F., Tounsi, A., & Ghazwani, M. H. (2023). Study and analysis of a tapered shaft in composite materials with variable speed of rotation. Structural Engineering and Mechanics, 87(2), 191-200.‏

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.