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Abstract: This work proposes a theoretical and numerical study on the behaviour of the tapered 
rotor. The characteristics of the elements of the rotor are determined; it is to evaluate the 
expressions of the kinetic and potential energies as well as the virtual work corresponding to the 
basic elements disk, shaft, bearing for the two conical models by applying the method of the 
finite elements. Numerical simulation allows us to observe and determine modal analysis and 
natural values.
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Nomenclature :
 – w = Angular velocity of the rotor (rad/s)
 – z = Damping ratio (dimensionless)
 – k = Stiffness of the rotor shaft (N/m)
 – c = Damping coefficient (N·s/m)
 – m = Mass of the rotor (kg)
 – f = Deflection angle (rad)

–  E = Modulus of elasticity of the shaft material (Pa)
–  I = Area moment of inertia of the shaft cross-section (m44)
–  L = Length of the shaft (m)
–  fn = Natural frequency (Hz)
 – t = Torsional stiffness (Nm/rad)
 – d = Displacement (m)

Abbreviations
–  FEM = Finite Element Method
–  RPM = Revolutions Per Minute
–  FE = Finite Element
–  BVP = Boundary Value Problem
–  SDOF = Single Degree of Freedom
Indices

–  i,j = Node indices in finite element analysis
–  n = Mode number in vibration analysis
Units
–  [rad/s] = Radians per second
–  [N/m] = Newton per meter
–  [N·s/m] = Newton second per meter
–  [kg] = Kilogram
–  [rad] = Radian
–  [Pa] = Pascal
–  [m3] = Cubic meters
–  [m] = Meter
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–  [Hz] = Hertz
–  [Nm/rad] = Newton meter per radian
–  [m] = Meter

1. Introduction
In various industrial applications, the rotor-

bearing system plays a critical role in ensuring 
the smooth operation and performance of 
turbomachinery, power plants, machine tools, 
automobiles, household appliances, and aerospace 
systems. This system is subject to complex dynamic 
behaviors influenced by factors such as rotational 
inertia, axial loads, gyroscopic effects, unbalanced 
masses, and nonlinear forces induced by fluid films.

Nelson and McVaugh pioneered the 
development of finite element models for rotor-
bearing systems, utilizing C1 type cylindrical finite 
elements with four degrees of freedom per nodal 
point, incorporating both transverse displacements 
and rotations [1]. This approach accounted 
for essential factors such as rotational inertia, 
axial loads, and gyroscopic forces. Subsequent 
advancements by Gash and Zorzi et al. extended 
this modeling to include internal damping effects 
[2,3]. Nelson further refined the finite element 
model based on Timoshenko's beam theory, which 
was subsequently enhanced by Ôzgtuven and 
Ozkan [5]. The effectiveness of these techniques was 
validated through subsequent works, confirming 
their reliability and maturity [6-8].

Further advancements introduced linearly 
conical elements based on Timoshenko's beam 
theory, incorporating shear effects through 
additional nodal variables, resulting in twelve 
degrees of freedom per element [9]. Greenhill et al. 
extended this approach to encompass all intrinsic 
rotational effects in a conical element formulation, 
providing closed-form expressions for elementary 
structural matrices.

The dynamic behavior of rotor-bearing systems 
is significantly influenced by unbalanced masses in 
rotating discs and nonlinear forces induced by fluid 
films. Jia et al. developed a non-probabilistic convex 
model using the Chebyshev Convex Method (CCM) 
to characterize uncertain parameters in Jeffcott 
rotor systems [10]. Numanoğlu et al. emphasized the 
importance of nonlocal finite element methods for 
analyzing the vibration behavior of nanobeams [11]. 
Ahmed et al. studied elastic Jeffcott rotors using a 
finite element model and small disturbance method, 

revealing the significant impact of rotational speed 
changes on rotor stability [12].

Ghayesh et al. conducted analytical studies 
on parametric and forced nonlinear vibrations of 
axially moving rotors [13]. Jeong demonstrated the 
efficacy of model order reduction for large-scale 
rotor-dynamic systems using Krylov subspace-
based finite element discretization, accelerating 
analyses while maintaining accuracy [14]. Fatehi 
et al. proposed a novel approach to increase the 
convergence speed of Sobol indices, enhancing 
global sensitivity analysis [15]. Saldarriaga et 
al. proposed an experimental methodology to 
balance highly flexible nonlinear rotors using neural 
networks [16].

Liu et al. provided a comprehensive overview 
of drone developments and their applications in 
civil engineering, covering hardware, software, 
control methodologies, and potential applications 
[17]. Muñoz-Abella et al. presented a methodology 
for crack identification in unbalanced rotors using 
artificial neural networks [18]. Matthew et al. 
proposed a double screw positive displacement 
machine configuration, analyzing rotor geometry 
effects [19]. Vinod et al. performed dynamic analysis 
of a 3D FE rotor-shaft system, validating results 
against experimental data [20]. Shravankumar et 
al. conducted numerical analysis of a rotor shaft 
system to prevent vibration [21], and Gayen et al. 
numerically analyzed a functionally graded shaft 
system in thermal environments [22].

"Genta and Gugliotta (1988) introduced a 
conical element for finite element rotor dynamics 
in their work published in the Journal of Sound 
and Vibration [23]. Additionally, Rachid et al. (2023) 
conducted a dynamic analysis of a rotating tapered 
composite Timoshenko shaft, as reported in Steel 
and Composite Structures. Furthermore, Zahi et 
al. (2023) investigated the study and analysis of a 
tapered shaft in composite materials with variable 
speed of rotation, as published in Structural 
Engineering and Mechanics [24, 25].

In the present work, a finite element formulation 
was developed for vibration analysis of a rotor 
with conical shafts. The study included transverse 
shear deformation theory, rotational inertia, and 
gyroscopic effects. A dedicated program was 
developed to calculate natural frequencies and 
critical speeds, with results rigorously compared to 
existing literature, showcasing advancements and 
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ensuring reliability in rotor-bearing system analysis.

2. Cinematic Equations
The Figure 1 shows a circular or annular conical 

beam with a linearly variable thickness. The 
expression for sector A and the diametric and polar 
moments of the inertia Id and Ip of the section are:

( ) ( )1 11jA Aζ α ζ β ζ= + +

( ) ( )2 3 4
2 2 3 21

2
d dj

p d

I I

I I

ζ α ζ β ζ γ ζ δ ζ= + + + +

=

( )1

( )2

( )3

( )4

( )5

The non-dimensional coordinated is: 

/z lζ =

Figure 1: The tapered element [23].

The expressions for the geometric coefficients in 
equations (2) and (3) are:

 

0 0 0 ,k j i ik ijr r r r r r∆ = − ∆ = −

Withe:

3. Element Matrix
The displacements of the beam can be 

expressed, in complex notation, as follows:
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The vector {q} enumerating the generalized 
complex coordinates:

The shape functions [n1] and [n2] are based 
on the usual formulation for a Timoshenko beam 
element.

( )6

( )7

( )8

[ ] [ ] [ ] [ ]
1

2 2
0

2T
p RG pl I n n d mζ= =∫

[ ] [ ]k Kη′′ =

[ ] [ ]
1

1 1
0

Ta
g

F d dk n n d
l d d

ζ
ζ ζ

  =  ∫

( )10

( )11

( )12

( )13

( )9[ ] [ ] [ ] [ ] [ ] [ ] [ ]
1 1

2 2 2 1 2 1
0 0

T
T

d
E d d A d dK I n n d gl n n n n d
l d d d d

ζ ζ
ζ ζ χ ζ ζ

     
= + − −     

     
∫ ∫

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
1 1

1 1 2 2
0 0

T T
T R dm m m pl A n n d I n n dζ ζ

 
= + = + 

 
∫ ∫

( ) ( )
( ) ( )
( ) ( )

2 2
1 0 0 1 0

3 3 2 2 2 2
2 0 2 0 00

3 3 4 2
2 0 2 00

2 / , /

/ , 3 /2

/ , / 4

j ij i j i j

i dj j ij i djj ij

j ij dj i dji

r r r r A r r A

r r r r I r r r r I

r r r r I r r I

α π β π

α π β π

γ π δ π

 = ∆ − ∆ = ∆ −∆
 
 = ∆ − ∆ = ∆ − ∆ 
 
 = ∆ − ∆ = ∆ −∆ 

The value of the constant 212 /dEI gAlφ χ=  can 
be calculated by using the geometric properties A, 

I, and the section in the middle of the element. The 
matrices: stiffness [K], mass [m], gyroscopic [G], 

structural damping [k"], and geometric matrix (axial 
forces) [kg] are defined as:
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The equation of motion can be written as:
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4. Results and Discussion

A program is developed for calculating Natural 
frequencies and critical velocities and Natural modes 
for a cone-shaped model. The results obtained 
compared with those available in the literature. The 
properties and geometric dimensions of the shaft 
are:
E: Young modulus= 2.1011 N/m2

ν : Poisson’s ratio = 0.3 

ρ : density = 7800 kg/m3

d1=0.1 m

d2=0.001 m

l= 16 m

 

Figure 2: 3D rotor configuration.
The application of finite elements evaluates the 

natural frequencies of rotation of a discrete conical 
element in fourteen elements for a Timoshenko 
beam.

Discretization in fourteen conical elements:

 

Figure 3: Rotor configuration discrete in fourteen elements.
Table 1: Natural values of the rotor system discretized in 
fourteen elements.

Number of 
own values

DI Natural 
frequency [rpm]

DI Natural frequency 
(ZAHI et Al)[Hz]

DI Natural frequency  
(Genta et Al[23])[Hz]

1 376 6,275 7.205

2 383 6,379 7.205

3 2010 33,497 34.955

4 2095 34,917 37.710

5 8732 145,527 X

6 8753 145,890 X

7 12884 214,733 X

8 12966 216,100 X

9 22665 377,750 X

10 22736 378,933 X

Table 1 presents data on the natural 
frequencies and damping coefficients for a conical 
element discretized into fourteen segments. This 
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discretization was accomplished using the Genta 
method of Timoshenko type, with a rotation speed 
of 12,000 rpm. Notably, the damping coefficients are 
reported as negative. Despite this unconventional 
observation, it's noted that negative damping 
coefficients typically indicate stable modes. This 
stability claim is further supported by the analysis 
presented in Figure 4, where the stability of the 
system is confirmed across various rotational speeds.

curve and the rotor's rotational speed axis (typically 
represented in RPM or rad/s). This intersection point 
indicates the critical speed associated with Mode 
N°2.

 

Figure 4: Campbell diagram.
From Campbell's diagram can determine the 

critical speed of Mode N °2:

Table 1: Critical speed.

Mode Critical speed [rpm]

2 2.3135e +004

Figure 4 illustrates the variation of the bending 
fundamental frequency ( )ω  as a function of the 
rotating speed ( )Ω  of the tapered shaft. The 
gyroscopic effect inherent to rotating structures 
induces a precession motion. As the rotating speed 
increases, the direct modes increase, whereas the 
reverse modes decrease. The gyroscopic effect 
causes a coupling of orthogonal displacements to 
the axis of rotation, resulting in the separation of 
frequencies into two branches: backward precession 
mode and forward precession mode. In all cases, the 
forward modes increase with increasing rotating 
speed, while the backward modes decrease.

A Campbell diagram, also known as a Campbell 
plot or speed map, is a graphical representation 
used in rotor dynamics to analyze the critical 
speeds of a rotating system. It typically displays 
the rotor's natural frequencies (often referred to as 
critical speeds) as a function of rotational speed. 
Once you've located the curve corresponding to 
Mode N°2, find the intersection point between this 

 
Figure 5: Stability diagram.

The stability diagram in Figure 5 confirms the 
stability of the rotor system irrespective of the 
rotational speed.

The stability diagram presented in Figure 5 likely 
plots the rotor's critical speeds or whirl frequencies 
against the rotational speed. The diagram may 
include curves indicating regions of stability 
and instability. Typically, regions below certain 
critical speeds or whirl frequencies indicate stable 
operation, while regions above indicate potential 
instability.

The first six modes and their frequency are 
calculated and presented in Figure 6

Figure 6 depicts the shape of the first six natural 
frequencies at 12,000 rpm. Natural frequencies 
correspond to specific mode shapes, which 
describe the spatial distribution of vibration within 
the system. For rotating machinery, mode shapes 
can include bending modes, torsional modes, and 
combinations thereof. In summary, the shape of 
the first natural frequencies at 12,000 rpm would 
depend on the specific characteristics of the 
system, including its geometry, material properties, 
and operating conditions. Analytical methods, 
numerical simulations, and experimental testing are 
typically employed to understand and characterize 
these frequencies accurately.

5. Conclusions 
In conclusion, this study delves into the vibration 

analysis of rotors featuring a conical shaft through 
the application of finite element methods. The 
outcomes derived from numerical simulations are 
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(a) Mode # PI = 376.4996 rpm 

for rotation speed = 12000 rpm 
(b) Mode # 2PD = 382.731 rpm 

for rotation speed = 12000 rpm 

 
(c) Mode # 3PI = 2010.1967 rpm 

           for rotation speed = 12000 rpm 
(d) Mode # 4PD = 2095.4643 rpm 
    for rotation speed = 12000 rpm 

 
(e) Mode # 5PI = 8731.922 rpm 

for rotation speed = 12000 rpm 
(f) Mode # 6PD = 8753.7203 rpm 

for rotation speed = 12000 rpm 
 

Figure 6: Shape of the first six element modes.
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meticulously examined to underscore the necessity 
and benefits of incorporating conical finite element 
advancements.
–  Through numerical simulations, it is evident that the proposed 
conical finite element model offers highly accurate predictions 
regarding the dynamic behavior of rotors with a conical shaft.
–  The observed increase in natural frequencies and critical speeds 
of the model underscores the inherent rigidity of the conical shaft. 
Furthermore, it's noteworthy that the reduction in natural frequency is 
contingent upon factors such as crack depth and location.

Overall, the findings highlight the efficacy of 
employing conical finite element methodologies 
in understanding and predicting the dynamic 
characteristics of rotors with conical shafts, thereby 
enhancing our comprehension and ability to 
address related engineering challenges.
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