Acta Mechanica Slovaca 2015, 19(3):6-11 | DOI: 10.21496/ams.2015.017

A Construction of H-antimagic Graphs

Mirka Miller1, Andrea Semaničová-Feňovčíková2*
1 School of Mathematical and Physical Sciences, The University of Newcastle, Australia; Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic; Department of Informatics, King's College London, UK
2 Department of Applied Mathematics and Informatics, Faculty of Mechanical Engineering, Technical University, Košice, Slovak Republic

Let G = (V,E) be a finite simple graph with p vertices and q edges. An edge-covering of G is a family of subgraphs H1,H2,...,Ht such that each edge of E(G) belongs to at least one of the subgraphs Hi, i=1,2,...,t. If every subgraph Hi is isomorphic to a given graph H, then the graph G admits an H-covering. Such a graph G is called (a,d)-H-antimagic if there is a bijection f: VjEg{1,2,...,p+q} such that for all subgraphs H' of G isomorphic to H, the sum of the labels of all the edges and vertices belonging to H' constitutes an arithmetic progression with the initial term a and the common difference d. When f(V)={1,2,...,p}, then G is said to be super (a,d)-H-antimagic; and if d = 0 then G is called H-supermagic.
We will exhibit an operation on graphs which keeps super H-antimagic properties. We use a technique of partitioning sets of integers for the construction of the required labelings.

Keywords: H-covering, (a,d)-H-antimagic graph, super (a,d)-H-antimagic graph, partition of set

Published: October 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Miller, M., & Semaničová-Feňovčíková, A. (2015). A Construction of H-antimagic Graphs. Acta Mechanica Slovaca19(3), 6-11. doi: 10.21496/ams.2015.017
Download citation

References

  1. Bača, M., Brankovic, L., Semaničová-Feňovčíková, A.: Labelings of plane graphs with determined face weights, Acta Mechanica Slovaca, vol 13(2), 2009, p. 64-71.
  2. Bača, M., Brankovic, L., Semaničová-Feňovčíková, A.: Labelings of plane graphs containing Hamilton path, Acta Math. Sinica - English Series, vol 27(4), 2011, p. 701-714. Go to original source...
  3. Bača, M., Miller, M., Phanalasy, O., Semaničová-Feňovčíková, A., Super d-antimagic labelings of disconnected plane graphs, Acta Math. Sinica - English Series, vol 26(12), 2010, p. 2283-2294. Go to original source...
  4. Bača, M., Lin, Y., Muntaner-Batle, F.A., Rius-Font, M., Strong labelings of linear forests, Acta Math. Sinica - English Series, vol 25(12), 2009, p. 1951-1964. Go to original source...
  5. Bača, M., Miller, M., Super edge-antimagic graphs: A wealth of problems and some solutions, Brown Walker Press, Boca Raton, Florida, 2008.
  6. Bača, M., Numan, M., Shabbir, A., Labelings of type (1,1,1) for toroidal fullerenes, Turkish Journal of Mathematics, vol 37, 2013, p. 899-907. Go to original source...
  7. Enomoto, H., Lladó, A.S., Nakamigawa, T., Ringel, G., Super edge-magic graphs, SUT J. Math., vol 34, 1998, p. 105-109. Go to original source...
  8. Figueroa-Centeno, R.M., Ichishima, R., Muntaner-Batle, F.A., The place of super edge-magic labelings among other classes of labelings, Discrete Math., vol 231, 2001, p. 153-168. Go to original source...
  9. Gutiérrez, A., Lladó, A., Magic coverings, J. Combin. Math. Combin. Comput., vol 55, 2005, p. 43-56.
  10. Inayah, N., Salman, A.N.M., Simanjuntak, R., On (a,d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput., vol 71, 2009, p. 273-281.
  11. Inayah, N., Simanjuntak, R., Salman, A.N.M., Syuhada, K.I.A., On (a,d)-H-antimagic total labelings for shackles of a connected graph H, Australasian J. Combin., vol 57, 2013, p. 127-138.
  12. Jeyanthi, P., Selvagopal, P., More classes of H-supermagic graphs, Internat. J. Algor. Comput. Math., vol 3, 2010, 93-108.
  13. Kotzig, A., Rosa, A., Magic valuations of finite graphs, Canad. Math. Bull., vol 13, 1970, p. 451-461. Go to original source...
  14. Lih, K.W., On magic and consecutive labelings of plane graphs, Utilitas Math., vol 24, 1983, p. 165-197.
  15. Lladó, A., Moragas, J., Cycle-magic graphs, Discrete Math., vol 307, 2007, p. 2925-2933. Go to original source...
  16. Marr, A.M., Wallis, W.D., Magic Graphs, Birkhäuser, New York, 2013. Go to original source...
  17. Maryati, T.K., Baskoro, E.T., Salman, A.N.M., Ph-(super)magic labelings of some trees, J. Combin. Math. Combin. Comput., vol 65, 2008, p. 198-204.
  18. Maryati, T.K., Salman, A.N.M., Baskoro, E.T., Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math., vol. 313, 2013, p. 397-405. Go to original source...
  19. Ngurah, A.A.G., Salman, A.N.M., Susilowati, L., H-supermagic labelings of graphs, Discrete Math., vol 310, 2010, p. 1293-1300. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.