
6 VOLUME 19, No. 3, 2015

Acta Mechanica Slovaca 19 (3): 6 - 11, 2015

* Corresponding author: Andrea Semaničová-Feňovčíková, Phone: +421 55 602 2219 
E-mail address: andrea.fenovcikova@tuke.sk 

Acta Mechanica Slovaca
ISSN 1335-2393

www.actamechanica.sk

A Construction of H-antimagic Graphs
Mirka Miller 1, Andrea Semaničová-Feňovčíková 2*

1 School of Mathematical and Physical Sciences, The University of Newcastle, Australia; Department of Mathematics, University of West Bohemia, 

Pilsen, Czech Republic; Department of Informatics, King's College London, UK
2 Department of Applied Mathematics and Informatics, Faculty of Mechanical Engineering, Technical University, Košice, Slovak Republic

Abstract: Let G = (V,E) be a finite simple graph with p vertices and q edges. An 
edge-covering of G is a family of subgraphs H1,H2,...,Ht such that each edge of 
E(G) belongs to at least one of the subgraphs Hi, i=1,2,...,t. If every subgraph Hi 
is isomorphic to a given graph H, then the graph G admits an H-covering. Such 
a graph G is called (a,d)-H-antimagic if there is a bijection f: VjEg{1,2,...,p+q} 
such that for all subgraphs H′ of G isomorphic to H, the sum of the labels of all the 
edges and vertices belonging to H′ constitutes an arithmetic progression with the 
initial term a and the common difference d. When f(V)={1,2,...,p}, then G is said to 
be super (a,d)-H-antimagic; and if d = 0 then G is called H-supermagic. 
We will exhibit an operation on graphs which keeps super H-antimagic properties. 
We use a technique of partitioning sets of integers for the construction of the 
required labelings.

Keywords: H-covering, (a,d)-H-antimagic graph, super (a,d)-H-antimagic graph, partition 
of set.

1. Introduction
	 An edge-covering of a finite and simple graph G is a family of subgraphs H1,H2,...,Ht 
such that each edge of E(G) belongs to at least one of the subgraphs Hi, i=1,2,...,t. In 
this case we say that G admits an (H1,H2,...,Ht)-(edge) covering. If every subgraph Hi 
is isomorphic to a given graph H, then the graph G admits an H-covering. Suppose 
that a (p,q)-graph G=(V,E) with p vertices and q edges admits an H-covering. The 
graph G is called (a,d)-H-antimagic if there exists a total labeling f: V(G)jE(G)

g{1,2,...,p+q} such that, for all subgraphs H′ of G isomorphic to H, the H-weights, 

 
 

 
 

  ,f
v V H e E H

wt H f v f e
  

   

constitute an arithmetic progression a, a+d, a+2d,..., a+(t-1)d, where a > 0 and 
d ≥ 0 are two integers, and t is the number of all subgraphs of G isomorphic 
to H. Moreover, G is said to be super (a,d)-H-antimagic if the smallest possible 
labels appear on the vertices. If G is a (super) (a,d)-H-antimagic graph then the 
corresponding total labeling f is called a (super) a,d)-H-antimagic labeling. For 
d = 0, a (super) (a,d)-H-antimagic graph is called H-magic and H-supermagic, 
respectively.
	 The H-(super)magic graph was first introduced by Gutiérrez and Lladó in [9]. They  
proved that some classes of connected graphs are H-supermagic, for example, the 
stars K1,n and the complete bipartite graphs Kn,m are K1,h-supermagic for some h. 
They also proved that the path Pn and the cycle Cn are Ph-supermagic for some 
h. Lladó and Moragas [15] investigated Cn-(super)magic graphs and proved that 
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wheels, windmills, books and prisms are Ch-
magic for some h. Some results on Cn-supermagic 
labelings of several classes of graphs can be found 
in [19]. Maryati et al. [17] gave Ph-(super)magic 

labelings of some trees such as shrubs, subdivision 
of shrubs and banana tree graphs. Other examples 
of H-supermagic graphs with different choices of 
H have been given by Jeyanthi and Selvagopal 
in [12]. Maryati et al. [18] investigated the 
G-supermagicness of a disjoint union of c copies 
of a graph G and showed that disjoint union of any 
paths is cPh-supermagic for some c and h.
	 The (a,d)-H-antimagic labeling was introduced 
by Inayah et al. [10]. In [11] Inayah et al. investigated 
the super (a,d)-H-antimagic labelings for some 
shackles of a connected graph H.
	 For H,K2, (super) (a,d)-H-antimagic labelings 
are also called simply (super) (a,d)-edge-
antimagic total labelings. These labelings are the 
generalization of the edge-magic and super edge-
magic labelings that were introduced by Kotzig 
and Rosa [13] and Enomoto et al. [7], respectively. 
For further information on (super) edge-magic 
labelings, see [4, 5, 8, 16]. 
	 The (super) (a,d)-H-antimagic labeling is related 
to a super d-antimagic labeling of type (1,1,0) of 
a plane graph that is the generalization of a face-
magic labeling introduced by Lih [14]. Further 
information on super d-antimagic labelings can be 
found in [1, 2, 3, 6].
	 In this paper we show one operation on graphs 
which keeps super H-antimagic properties. We use 
a technique of partitioning sets of integers for a 
construction of the required labelings.

2. Constructions Using Partitions of Integers
	 In this section we examine the existence of the 
super H-antimagic labelings for graphs obtained 
by one graph operation. The constructions of 
labelings will be made using partitions of the sets 
of integers.
	 Consider the partition 2

n  of the set of integers 
{1,2,...,2n} into n, n ≥ 2, couples such that the 
sums of the numbers in all couples are the same. If  
2
n (i) denotes the ith couple in the partition 2

n  
then, for example,

in the ith couple we have

     2 , , 2 1 ,n
i ii a b i n i   

where i=1,2,...,n. For the sum of the two numbers 

 2  2 1n
i ii a b n   

for i=1,2,...,n.
	 A similar idea can be also used for a partition of 
the set of kn consecutive integers into k-tuples.
	 Let n, k and i be positive integers. We will 
consider the partition n

k  of the set {1,2,...,kn} into 
n, n ≥ 2, k-tuples such that the sum of the numbers 
in the ith k-tuple is always the same and equal to 
the constant k(1+kn)/2, where i=1,2,...,n. Using 
the divisibility we have that if k is odd then n has to 
be odd too.
	 Let us consider the partition 3

n  of the set of 
integers {1,2,...,3n}, n odd, into triples such that the 
ith triple in the partition is defined in the following 
way

   

 

 

3 , , 

1, ,3 1
2 2

for 1 mod 2 ,

3 1, ,3 1
2 2

for 0 mod 2 .

n
i i ii a b c

n i in n i

i

i n i n i

i



        
       





	 It is easy to see that the sum of all numbers in the 
ith triple is equal to

   
3

3 3 1
 

2
n

i i i

n
i a b c


    (1)

for i=1,2,...,n. Moreover, the minimum of the 
numbers in every triple is the number from the set 
{1,2,...,n}.
	 Only for the purposes of this paper by the 
notation  n

k i c  we mean that the constant c is 
added to every element of  n

k i . 
	 By A-B we denote the difference of the set B 
from the set A.
	 Let 2

kG  be a graph obtained from two isomorphic 
graphs G and G′ by connecting corresponding 
vertices of G and G′ with a matching, then subdivide 
every edge of the matching using k vertices. If a 
(p,q)-graph G has vertex set V(G)={v1,v2,...,vp} 
then the graph 2

kG  has the vertex set
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   2( )

{ : 1, 2, , , 1, 2, , }

k

j
i

V G V G V G

v i p j k

 





   

and the edge set

   




2

1 1

( )

, , :  1, 2, , ,

1, 2, , 1 .

k

j j k
i i i i i i

E G E G E G

v v v v v v i p

j k



 







 







	 The graph 2
kG  has (k+2)p vertices and 2q+ 

(k+1)p edges.
	 A useful property for finding H-antimagic 
labelings is given in the following lemma.

Lemma 1.
	 Let f be a super (a,d)-H-antimagic labeling of 
G=(V,E) and let r, s be nonnegative integers. Then 
the labeling

     
 
 
   

: 1, 2, , ,

1,

2, ,

g V G E G r r r V G

r s V G

r s V G

r s V G E G

    

  

  

  





defined such that

     
     

                 if   ,

            if  

g v f v r v V G

g e f e r s e E G

  

   

has the property that

     :   , , , 1 ,gwt H H G b b d b t d    

where t is the number of all subgraphs in  
G isomorphic to H and b is a positive integer.

Proof.
	 Let

        : 1, 2, , f V G E G V G E G  

be a super (a,d)-H-antimagic labeling of G=(V,E) 

and let H1,H2,...,Ht be all subgraphs of G isomorphic 
to H. Thus the set of all H-weights under the 
labeling f is

  
  

:  1, 2, , 

, , , 1 .
f iwt H i t

a a d a t d



   




(2)

	 For the H-weight of the subgraph Hi, i=1,2,...,t, 
under the labeling g we have

 
 

 
 

 

 
  

 
  

 
 

 
 

     
   

    .

i i

i

i

i i

g i
v V H e E H

v V H

e E H

v V H e E H

i i

f i i

i

wt H g v g e

f v r

f e r s

f v f e

r V H r s E H

wt H r V H

r s E H

 





 

 

 

  

 

  

 

 

 





 

	 As all subgraphs Hi are isomorphic to H it holds

   
   

,

.
i

i

V H V H

E H E H





	 Thus      i ir V H r s E H   is a constant for all 
i=1,2,...,t and

 
        .

g i

f i

wt H

wt H r V H r s E H



  
(3)

	 According to the property (3) and by using (2) we 
get

  
  

:  1, 2, , 

, , , 1 ,
g iwt H i t

b b d b t d



   





where       .b a r V H r s E H   

⁯

Theorem 2. 
	 Let G be a super (a,d)-H-antimagic graph of odd 
order containing t subgraphs isomorphic to H and 
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let k be a positive integer, k ≥ 1. If the graph 2
kG  

contains exactly t subgraphs isomorphic to 2
kH  

then the graph 2
kG  is super (b,2d)- 2

kH -antimagic.

Proof.
	 Let      : 1, 2, , f V G E G p q    be a super 
(a,d)-H-antimagic labeling of a (p,q)-graph G of 
odd order and let H1,H2,...,Ht be a family of all sub-
graphs of G isomorphic to H.
	 Clearly, the set of all H-weights is as follows.

  
  

:  1, 2, , 

, , , 1
f lwt H l t

a a d a t d



   




(4)

and the smallest possible labels 1,2,...,p appear on 
the vertices of G.
	 Let us consider the labeling g of the vertices and 
edges of 2

kG  defined in the following way.

     
     
    

   

     
 

     
 

1
3

                 if    ,

          if     ,

 min 2

if     1, 2, , ,

 1      if     1, 2, , ,

 2, 3, , ,
 1

 if    ,

 1

 if    ,

p
i

j
i

i

g v f v v V G

g v f v p v V G

g v i p

i p

g v i j p i p

j k
g e f e k p

e E G

g e f e k p q

e E G

g v

 

   

 



   



  



   

 













    
    

      

     

1

3

3

1

, 

  1 2

min 1 2

 if     1, 2, , ,

 2 6 2 1

 if     1, 2, , ,
 2, 3, , .

k
i i i

j j
i

p

i

p

j
i

v g v v

i k p q

i k p q

i p

g v v k p q g v

i p
j k





   

   



    













	 It is easy to see that g is a bijection from the vertex 

set and edge set of 2
kG  onto the set {1,2,...,(2k+3)

p+2q} and the vertices of 2
kG  are labeled with the 

smallest possible labels.
	 For the 2

kH -weight of the subgraph  2
k

lH , 
l=1,2,...,t, under the labeling g we get

  
  

 
  

 

 
 

 
 

 
 

 
 

 
 

 
    

 
 

   

 
      

2 2

'

2

1 : 

1

: 

1

2 : 

1 1

: 

 

k k
l l

l l

i l

l l

i l

i l

i l

k
g l

v V H e E H

v V H v V H

k
j

i
j i v V H

e E H e E H

k
i i i i

i v V H

k
j j

i i
j i v V H

g l g l

k
i i i i i

i v V H

j

wt H g v g e

g v g v

g v

g e g e

g v v g v v

g v v

wt H wt H

g v g v v g v v

 

 

 

 





 





 


 



 



 



 


 


 

  



 

 

 

 



 



 
    1

2 : 

.
i l

k
j j j

i i i
i v V H

g v g v v



 
	 According to (3) we get

       
     

   

 1 ,

 

.

g l f l

g l f l

wt H wt H k p E H

wt H wt H p V H

kp p q E H

  

  

  

	 According to (1) it holds

 
      

 
   
     
      

 
       

        

   

   

1 1

: 

3
: 

3

3

3
: 

min 2

1 2

min 1 2

2 2 2

3 3 1
 2 2 2

2
4 17 8 3

 
2

4 17 8 3
 .

2

i l

i l

i l

k
i i i i i

i v V H

p

i v V H

p

p

p
l

i v V H

l
l

l

g v g v v g v v

i p

i k p q

i k p q

i k p q V H

p V H
k p q V H

k p q
V H

k p q
V H







 

 

   

   

   


   

  


  








 








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 
      

 
   
     
      

 
       

        

   

   

1 1

: 

3
: 

3

3

3
: 

min 2

1 2

min 1 2

2 2 2

3 3 1
 2 2 2

2
4 17 8 3

 
2

4 17 8 3
 .

2

i l

i l

i l

k
i i i i i

i v V H

p

i v V H

p

p

p
l

i v V H

l
l

l

g v g v v g v v

i p

i k p q

i k p q

i k p q V H

p V H
k p q V H

k p q
V H

k p q
V H







 

 

   

   

   


   

  


  








 









Moreover,

 
    

 
      

 
  

     
     

1

2 : 

2 : 

2 : 

2 6 2 1

2 6 2 1

2 6 2 1 1

2 6 2 1 1 .

i l

i l

i l

k
j j j

i i i
j i v V H

k
j j

i i
j i v V H

k

j i v V H

l

g v g v v

g v k p q g v

k p q

k p q k V H

k p q k V H



 

 

 



     

   

    

    

 

 

 

Thus, for l=1,2,...,t we get

    2
2 ,k

g l f lwt H wt H A 

where

  
  
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Using (4) we have

	 This concludes the proof that the graph 2
kG  is 

super (2a+A,2d)- 2
kH -antimagic.

⁯

3. Conclusion
	 In this paper we examined the existence of super 

2
kH -antimagic labelings for graphs 2

kG  obtained 

from two isomorphic graphs G and G′ by joining 
every couple of corresponding vertices vdV(G) 
and v′dV(G′) by a path of length k+1.
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