Acta Mechanica Slovaca 2011, 15(3):38-45 | DOI: 10.21496/ams.2011.026

Application of Inverse Vibration Problems to Model Updating

Ladislav Stareka,*, D.J. Inmanb, Daniel Starekc
a Institute of Applied Mechanics and Mechatronic, Faculty of Mechanical Engineering, Slovak University of Technology at Bratislava, 812 31 Bratislava, Slovakia
b Center for Intelligent Material Systems and Structures Department of Mechanical Engineering, Virginia Polytechnic Institute and State University Blacksburg, VA 24061
c Department of Structural Mechanics, Faculty of Civill Engineering, Slovak University of Technology at Bratislava, 812 31 Bratislava, Slovakia

This paper summarize the authors previous effort on inverse eigenvalue problem and applies the theory to the model updating problem. Comments are made on how their procedure may be used to solve the damage detection problem.

Keywords: Vibration, Eigenvalue problem, Inverse eigenvalue problem

Received: May 21, 2011; Accepted: June 18, 2011; Published: October 31, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Starek, L., Inman, D.J., & Starek, D. (2011). Application of Inverse Vibration Problems to Model Updating. Acta Mechanica Slovaca15(3), 38-45. doi: 10.21496/ams.2011.026
Download citation

References

  1. Danek, O. (1982). Non conservative Dynamic Systems. Strojnícky Časopis, vol. 33, no. 6, pp. 667-680
  2. Starek, L., Inman, D.J. (2004). Design of Nonproportional Damped Systems via Symmetric Inverse Problem. Journal of Vibration and Acoustic, vol. 126, pp. 212-219 Go to original source...
  3. Gohberg, I., et al. (1982). Matrix Polynomials. Academic Press
  4. Gladwell, G.M.L. (1986). Inverse Problem in Vibration. Martinus Nijhoff Publishers, Boston, MA Go to original source...
  5. Lancaster, P., Maroulas, J. (1987). Inverse Eigenvalue Problems for Damped Vibrating Systems.Journal of Mathematical Analysis and Application, vol.123, no.1, pp. 238-261 Go to original source...
  6. Lieven, N.A.J., Ewins, D.J. (1990). Expansion of Modal Data for Correlation. 8th IMAC, pp. 605-609
  7. Starek, L., Inman, D.J. (1991). On the Inverse Vibration Problem with Rigid Body Modes. ASME Journal of Applied Mechanics, vol.58, pp. 1101-1104 Go to original source...
  8. Starek, L., Inman, D.J., Kress A. (1992). A Symmetric Inverse Vibration Problem. ASME Journal of Vibration and Acoustics, vol.114, pp. 564-568 Go to original source...
  9. Starek L., Inman D.J. (1995). A Symmetric Inverse Vibration Problem with Over-damped modes. Journal of Sound and Vibration, vol. 181, no. 5, pp. 893-903 Go to original source...
  10. Starek, L., Inman, D.J., Pilkey, D.J. (1995). A Symmetric Positive Definite Inverse Vibration Problem with Underdamped Modes. Proc. of Design Engineering Technical Conference, Boston, Messachusetts, DE, vol. 84-3, volume 3-Part C, ASME, pp. 1089-1094 Go to original source...
  11. Starek, L., Inman, D.J. (1997). A Symmetric Inverse Vibration Problem for Non-proportional, Underdamped System. ASME Journal of Applied Mechanics, vol. 64, no. 3, pp. 601-605 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.