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ABSTRACT
This paper summarize the authors previous ef-
fort on inverse  eigenvalue problem and applies 
the theory to the model updating problem. Com-
ments are made on how their procedure may be 
used to solve the damage detection problem.

1. Introduction  
	 Here we consider linear lumped parameter sys-
tem which can be modeled by a vector differential 
equation in the second order form given by

( ) ( ) ( ) ( )Mq t Dq t Kq t f t1+ + =p o (1)

where ( )q t  is an n vector of time-varying elements 
representing the displacement of the masses in a 
lumped mass model of some structure or device. 
The vectors      and      represent the velocities 
and accelerations, respectively. The n vector f

1
(t) 

represents applied external forces and its time 
varying. The coefficients M, D and K are nxn ma-
trices of constant real elements representing the 
various physical parameters of mass, damping, and 
stiffness. The matrices M, D and K could be either 
asymmetric or symmetric and if symmetric M is 
positive definite.
	 If M is positive definite and symmetric it has a 
positive definite matrix square root, with a sym-
metric, positive definite inverse denoted by 
M-1/2. Let us then consider the transformation  
q(t)=M-1/2o(t). Substitution of this change of co-
ordinates into Eq. (1) yields 

(2)

where K M KM
/ /1 2 1 2

=
- -u  and D M DM

/ /1 2 1 2
=

- -u  
are necessarily symmetric if D and K are and                             
.

	 Previously, inverse spectral problems in vibration 
of lumped nonconservative systems have been 
solved in [1], [2], [4], [5], [7], [8], [9], [11]. 
In [4] the inverse spectral problem for vibration 
of lumped conservative systems          modeled 
by tridiagonal matrices has been solved. In [1] has 
been solved this problem for the case of real nons-
ingular coefficient matrices and he has defined the 

( ) ( ) ( ) ( )v t Dv t Kv t p t+ + =p u o u

( )q to ( )q tp

.( ) ( )p t M f t
/1 2

1=
-

( )D 0=u

inverse formulas which determine the coefficient 
matrices M, D and K of the above mentioned sys-
tems with given spectral and modal data. In [7] has 
been solved the inverse problem in the state space 
form and authors have determined the inverse 
formulas which directly determine real coefficient 
matrices M-1K and M-1D for the case that D and 
K are singular coefficient matrices (i.e., there exist 
rigid-body modes). The symmetric inverse prob-
lem with overdamped modes has been discussed 
in [9].
	 The results presented here build on those of Lan-
caster and Maroulas [5], those of Starek and Inman 
[8] and of those of Starek and Inman [11]. Lancaster 
and Maroulas have solved the inverse problem in 
vibration by means of the spectral theory of ma-
trix polynomials. They defined Jordan pairs that 
determine a self-adjoint matrix polynomial. Starek 
and Inman [8] have been solved the inverse spec-
tral problems in the state space form and defined 
the conditions for given spectral and modal data 
under which the inverse formulas determine real 
symmetric coefficient matrices    and    . However, 
their solution requires that the given eigenvalues 
must all be complex valued and does not preserve 
given eigenvectors.
	 The paper Starek and Inman [11] gives an alter-
native solution to the inverse problem solved in 
Starek and Inman [8] and extends these results 
to include the preservation of eigenvectors. They 
have derived conditions under which spectral and 
modal data determine real, symmetric coefficient 
matrices    and    which do not necessarily com-
mute. The method has been outlined which allows 
the synthesis of a symmetric, positive semidefinite 
underdamped linear system having desired eigen-
values and eigenvectors [2], [10]. The goal of this 
paper is to give an alternative solution to the in-
verse eigenvalue problem in vibration in 2n space 
to include the determination of all three coefficient 
matrices M, D and K from given spectral and mod-
al data and to apply the inverse eigenvalue prob-
lem to the model updating problem [9], [11].

2. Theoretical Background 
2.1Symmetric Case
	 By combining the vector identity 
with Eq. (2), this system can be written in first order  
2n space as

( ) ( ) ( )Nu t Pu t g t- =o (3)

Du Ku

Du Ku

( ) ( )v t v t 0- =o o
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where the vector u(t) and g(t) are defined by  the matrix  K to be the 2nx2n  diagonal matrix of 
eigenvalues m

i
 with 1‘s on the super diagonal if a 

particular m
i
 is not simple. In addition, if the  nx2n 

matrix V is defined by taking the  2n, n x 1vectors 
v

i 
as its columns, if the 2nx2n matrix U is defined 

by taking the 2n, 2n x 1 vectors   as its columns, 
and if the 2nx2n matrix X is defined by taking the 
2n, 2n x 1, vectors x

i
 as its columns, then Eqs. (8), 

(9), and (10) can be expressed as the matrix equa-
tions:

and the coefficient matrices are defined by the 
partitioned forms

,N
D

I

I
P

K

I0 0

0
and= =

-u u
< <F F (4)

Finally, pre-multiply Eq. (3) by the inverse matrix 
N-1. This yields the standard state space formula-
tion  

( ) ( ) ( )x t Ax t h t= +o (5)

where the state vector x(t)=u(t),h(t)=N-1g(t) 
and the state matrix is given by

A
K

I

D

0
=

- -u u
< F (6)

	 Note that the inverse of the matrix N is given by 
the partitioned form

N
I

I

D

01
=

-

-

u
< F (7)

and hence exists whether or not the matrix Du  is 
singular.
	 The three eigenvalue problems are

( )K D I v 0
2

m m+ + =u u

( )P N u 0m- =

( )A I x 0m- =

(8)

(9)

(10)

where the constant vectors v, u and x must be 
nonzero. Equation (8) defines the second order 
matrix polynomial problem, Eq. (9) defines the (first
order) matrix pencil problem and Eq. (10) defines 
the standard matrix eigenvalue problem. Each of 
these three problems results in the same set of  2n 
complex scalars, denoted m

i
, which are the eigen-

values of the system, and which contain the sys-
tem‘s natural frequencies and damping ratios. Each 
of the complex vectors v

i
, u

i 
and x

i
 corresponding 

to each m
i
 are in some way related to the system‘s 

mode shapes.
	 Each of these eigenvalue problems in v

i
, u

i 
and 

x
i 
can be restated as a matrix equation by defining 

KV DV V 0
2

K K+ + =u u

PU NU 0K- =

AX X 0K- =

(11)

(1 )2

( 3)1

2.2 Asymmetric Case and Inverse Formulas for all Three 
Coefficient Matrices
	 By combining the vector identityAAAAAAAAAAAA                                                
with equation (1), this system can be written in the 
first order 2n space as is given by (3) where

,P N
K

0

0

M

D

M

M

0
=

-
=r r< <F F ( 4)1

and the matrices 
P and N are defined by the partitioned form

A
0

M K

I

M D
1 1=

- -
- -

< F ( 5)1

	 Finally, pre-multiply Eq. (3) by the inverse ma-
trix N-1. This yields the standard state space for-
mulation given by (5) where the state vector                       
aaaaaaaaaaaaaaaaaaaaaaaaaand the state matrix A 
is given by

	 Eigenvalue problems for that case can be ex-
pressed as the matrix equation

,Y AX Y X I
T T

K= = ( 8)1

where the matrices U
l
 and Y are the matrices of 

left eigenvectors of the systems given by Eqs. (3) 
and (5). The orthogonality and norm conditions are 
defined as follows

( )
( )

( )
, ( )

( )
u t

v t

v t
and g t

p t

0
= =

o
< <F F

,
( )

( )
( )

( )q t

q t
t

t
g

f

0

u(t) = =
o

< <F F

0AX X Y A Y
T T

K K- = = -

PU NU U P U N0r r l
T

l
T

K K- = = - ( 7)1

( 6)1

( ) ( )Mq t Mq t 0- =o o

( ) ( ), ( ) ( )x t u t h t N g t
1

= =
-
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,U PU U NU Il
T

r l
T

rK= =

( 0)2

( 9)1

UX U U
V

V

W

W 
, ,r r l T

K K
= = =< <F F

Y U N
T

l
T

=

A X Y U U N
T

r l
T

K K= =

( 1)2

( 3)2

( 2)2

From the Eq. (14), (15), (19) and (20) follows:

(M V W )T 1
K=

-

( )D M V W M
T2

K=-

( ) ( )K M V W M V W M
T T2 3

K K=- + ( 6)2

( 5)2

( 4)2

After some manipulation we get

VW0
T

=

with modal condition

( 7)2

These relationships are used in the next section for 
solution of an model updating.
2.3 Inverse Formulas
	 In this section, inverse formulas and conditions 
for given spectral and modal data to determine 
symmetric coefficient matrices are given in [8], 
[11]. Inverse formulas specify the coefficient matri-
ces     and    in terms of the modal matrices V, W 
and spectral one K. Using (13) and (21) we obtain 

By comparing the blocks in Eq. (28), it follows that

,V W I VW 0andT T
K = = ( 3)3

	 Unfortunately there is no guarantee at this point 
that the formulas given  by Eqs. (31) and (32) will 
result in      and      being symmetric.
	 The formulas (31) and (32) determine the two 
desired coefficient matrices of the system (2) if the 
third is chosen with spectral and modal properties 
which must satisfy the conditions (29) or (33). From 
condition (33), suitable matrices  K, V and W can 
be specified to solve the inverse eigenvalue prob-
lem. 
	 If the spectral and modal properties are chosen 
such that Eqs. (29) or (33) is valid, then the system 
determined by the coefficient matrices      and     is 
unique. Eqs. (31) and (32) solve the inverse prob-
lem for system with rigid body modes, i.e.,   and       
AAcan be singular; however, these equations do 
not guarantee that the matrix coefficients are sym-
metric.
2.4 Inverse Formulas for Symmetric Coefficient Matrices
	 If the inverse formulas are to generate real sym-
metric coefficient matrices, then the specified spec-
tral and modal matrices must fulfill some further 
requirements. From the theory of matrix polynomi-
als [3] it is known that if a monic matrix polyno-
mial is self-adjoint, then there exist a Jordan triple  
(U, K, P

K
, U*), where P

K
 is a permutation matrix 

and U* denotes the complex conjugate transpose 
of the matrix U. Hence in the case of interest here 
the spectral matrix K and modal matrices V and    
W will generate hermitian coefficient matrices if 
the left modal matrix is of the form 

W DV W MV W MV I
T T T

K K+ + =

A X X
V

V
X

V X

V X

K

I

D

0

1 1
1

2 1
K

K
K

K

K
= = = =

- -

- -
-

-

u u

< <

<

F F

F
( 8)2

I V X0
1

K=
-6 @ ( 9)2

and

K D V X
2 1
K- - =

-u u6 @ (30)

	 After some manipulation the following inverse 
formulas are obtained

D V W
T2

K=-u

K D V W
T2 3

K= -u u

(3 )1

( 2)3

with the conditions

W P V
T

=
)

K ( 4)3

where the real valued matrix P
K
 is given in [3].

	 The conditions that must be satisfied by the speci-
fied spectral and modal matrices in order to gener-
ate real symmetric coefficient matrices are present-
ed next. From Eq. (15)

XW
I

0T
= < F ( 5)3

Substituting  X
V

VK
= < F and WT from (34) yields that

V

V
P V

I

0

K
=

)
K< <F F ( 6)3

Du Ku

Du Ku

Du
Ku

Ku Du
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V EV V P V2 r r
T

R R R
T

=-

V FV I V J P V2 r r
T

R R R R
T

= -

( 7)3

( 8)3

( 9)3

(40)

E P CP CC C
T

= -

F J P CJ P J P C CJ P Cr C i C i C
T

r C
T

= - - -

,M m M D d D K k K,j
j

N

e j e
j

N

j e
j

N

1 1 1

m

j j

d

j

k

= = =
= = =

/ / / (4 )1

D M Ka b= + (42)

,V KVO
T

O o
2
X=

,V DV 2O
T

O D=

,V MV IO
T

O =

(43)

(44)

(45)

,

,

A k b A d

b A m b

KI l KI DI l

DI MI l MI

= =

=

! !

!

+ +

+
(46)

	 The conditions given by Eqs. (33) specify vectors 
that will generate real symmetric coefficient matri-
ces for the given spectral matrix K. Note that this 
also depends on the structure of the state matrix, 
whether or not A is assumed to be simple or of 
general Jordan structure, and whether or not the 
dynamic system is over-damped, under damped, 
critically damped, or exhibits mixed damping. 
	 nxn matrix C is real valued and nonsingular. This 
represents a choice and offers potential for restrict-
ing the solution of the inverse problem. Substituting 
this value for V

i
 into Eq. (33) yields the simplified 

form [8]

where I is the identity matrix and the matrices E 
and F are defined by 

	 The above formulas can now be used to construct 
a symmetric solution to the inverse eigenvalue 
problem as developed in the following section.

3. Application of the Inverse Problem to the 
Model Updating 

	 Several incompatibilities exist between ana-
lytical models and experimentally obtained data. 
For instance consider the case of finite element 
analysis (FEA) modeling compared with experi-
mental modal analysis (EMA) data [6]. This case 
accounts for the majority of activity in vibration 
modeling used in industry. In this situation the 
analytical model is characterized by a large num-
ber of degrees of freedom (and hence modes), ad 
hoc damping mechanisms and real eigenvectors 
(mode shapes).
	 The FEM model produces a mass, damping 
and stiffness matrix which is numerically solved 
for modal data consisting of natural frequen-
cies, mode shapes and damping ratios. Common 
practice in industry is to compare this analytically 
generated modal data with natural frequencies, 
mode shapes and damping ratios obtained from 
EMA [6]. The EMA data is characterized by a small 
number of modes, incomplete and complex mode 

shapes and non proportional damping. 
	 It is very common in practice for this experimen-
tally obtained modal data to be in disagreement 
with the analytically derived modal data. The point 
of view taken is that the analytical model is in error 
and must be refined or corrected based on experi-
mental data.
	 The goal of this chapter proposed here recogniz-
es that the model correction problem is a subset of 
the inverse problem. The approach proposed here 
is to use the results of inverse eigenvalue problems 
to develop methods for correcting models.
	 The relation among the matrix coefficients M, 
D, and K and design parameters and the element 
matrices can be expressed follows       

where k
i
, d

i
, m

i 
are the design parameters number-

ing N
k
, N

d
, N

m 
and K

ej
, D

ej
, M

dj
 respectively and the 

element matrices are known.
3.1 Systems with Proportional Damping
For the case of symmetric coefficient matrices K, D, 
M and systems of simple structure (K= S=KT) it 
follows from the eigenvalue problem that  W = V.
In the case of proportional damping where the 
damping matrix is of the form

there exists such real matrix V
O
, that the following

hold

3.2 Complete Modal and Spectral Data Case
	 For known modal and spectral data the matrix 
coefficients are given by Eqs.(24), (25) and (26). 
Then by using relations in Eq.(42) for known ele-
ment matrices M

e
, D

e
 and K

e 
we yield the design 

parameters m
j
, d

j
 and k

j 
of the system. Entries in 

the matrices M, D and K are given by linear combi-
nation of the design parameters as follows

where A
KI

, A
DI

, A
MI

 to be (N2, N
K
), (N2, N

d
) and     
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K

k k

k

k

k k k

k

k

k

k k

k

k

k k

k

k

0

0

0

0

0

0

0

0

0

0

0

0

a

1 2

2

2

2 3 6

3

6

3

3 4

4

4

4 5

6

6

=

+

-

-

+ +

-

-

-

+

-

-

+

-

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

, , , ,M diag m m m m m

D M K

a

a

1 2 3 4 5

a b

=

= +

] g

. , .0 01 0 0001a aa b= =

(N2, N
m
) matrices and  b

KI
, b

DI
, b

MI 
to be (N2, I) 

vectors.   
	 Let us have the analytical model given by the co-
efficient matrices M

a
, D

a
 and K

a
 with in advanced 

structure ( some entries are zeros ). For this model 
the modal and spectral data are represented by 
the matrices  V

a
, W

a
 and K

a
. 

	 Let the experimental spectral and modal data be 
given by the matrices V

e
, W

e
 and K

e
. By using Eqs.

(24)-(26) we yield the experimental coefficient ma-
trices M

e
, D

e
 and K

e 
which will have different struc-

ture than the analytical form of these matrices. 

where . , , . , , . , .

. , . , . , . , .

k

m

1000 1 6 30 1 2 25 1 5 1 0

0 5 5 5 5 5 0 8 3 0

aj

aj

=

=

]

]

g

g
	 Let us simulate errors in some design parameters 
and than build coefficient matrices M

r
, D

r
 and K

r
, 

where . , . . . .

. . . . .

, , , ,

, , , ,

k

m

1000 1 84 25 5 1 056 29 1 68 1 14

0 57 4 95 5 94 0 76 3 3

jr

rj

=

=

]

]

g

g
and a

r
=0.011, b

r
=0.0001. 

	 Then the design parameters determined from, 
and    K

e 
by using Eq.(41) will create coefficient ma-

trices M
u
, D

u
 and K

u
 which will be different from 

both analytical M
a
, D

a
 and K

a
 and experimental 

M
e
, D

e
 and K

e
. The structures of the matrices M

u
, 

D
u
 and K

u 
and matrices M

a
, D

a
 and K

a
 will be the 

same. Nonzero entries of matrices M
u
, D

u
 and K

u 

and nonzero entries of matrices M
e
, D

e
 and K

e
will 

be the same  (N
k
, N

d
, N

m
= n

bK
, n

bD
, n

bM
), or will be dif-

ferent in the sense of minimum of Euclidian norm 
(N

k
, N

d
, N

m
< n

bK
, n

bD
, n

bM
). Because the structure of 

the matrices M
u
, D

u
 and K

u 
and the matrices M

e
, D

e
 

and K
e
is different, the matrices V

u
, W

u
 and K

u 
and 

matrices V
e
, W

e
 and K

e 
will be different too.

3.3 Example
	 Let the coefficient matrices of the analytical sys-
tem are

. . . . . 0., , , , ,k 10 0 26 2 36 0 13 3 07 0 09 09uj
4

= 5 ?
. . . . ., , , ,m 0 53 4 80 6 27 0 77 3 52uj = 5 ?

. . .

. . .

, , ,

, ,

0 01 0 0001 0 011

0 0001 0 009 0 0001

a a r

r e e

a b a

b a b

= = =

= = =

where  

Table 1: Comparison of analytical, effective and updated design parameters.

kaj 1.6 30 1.2 25 1.5 1.0

krj 1.84 25.5 1.056 29 1.68 1.14

kuj 2.686 23.665 1.397 30.793 0.951 0.959

maj 0.5 5.5 5.5 0.8 3.0

mrj 0.57 4.95 5.94 0.76 3.3

muj 0.5308 4.8068 6.2764 0.7737 3.5202

	 This system will by represented by modal and 
spectral matrices V

r
, W

r
 and K

r 
or V

0r 
and S

r
. By us-

ing Eqs.(24), (25), and (26), or (43)-(45) we compute 
the effective design parameters with errors.
Let us define some errors matrices eV

0
 = eW

0
. eS 

representing a noise in measurement and ones. 
	 These will represent experimental modal and 
spectral data V

0e
 = V

0r
. eV

0
 and S

e
 = S

r
. eS. Multiply 

every entry of the error matrices with correspond-
ing entry of effective modal and spectral ones.
	 By using Eqs.(43)-(45) we yield the experimen-
tal coefficient matrices K

e
, M

e
 and a

e
=0.009, 

b
e
=0.0001.

	 From (46) we yield the new design parameters 
(see [8])

	 From the Table 1 follows, that compare to effec-
tive design parameters updated are under some 
errors which are relative small for mass design pa-
rameters (about 5-7%) and little high for stiffness 
ones (up to 45%). It should be notice, that for com-
plete spectral and modal data case without noise 
the inverse formulas give exact design parameters.
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4. Conclusion
	 This paper summarize the authors previous effort 
on inverse eigenvalue problem.
	 The conditions (27) and (33) for given spectral 
and modal data have been defined under which 
the inverse formulas determine real symmetric co-
efficient matrices      and     . However, that solution 
does not preserve given eigenvectors. The alterna-
tive solution extends these results to include the 
preservation of eigenvectors. There have been de-
rived conditions under which spectral and modal 
data determine real, symmetric coefficient matri-
ces    and    which do not necessarily commute. 
The method has been outlined which allows the 
synthesis of a symmetric, underdamped linear sys-
tem having desired eigenvalues and eigenvectors.
	 The new result gives the alternative solution to 
the inverse eigenvalue problem in vibration in 2n 
space to include the determination of all three co-
efficient matrices M, D and K from given spectral 
and modal data and to apply the inverse eigenval-
ue problem to the model updating problem.
	 Updating methods for the cases of complete 
spectral and modal data, incomplete spectral 
and modal data with complete eigenvectors and 
incomplete modal and spectral data with incom-
plete eigenvectors are presented. 
	 There are three main objectives of the next re-
search: 
the reconstruction of mass, damping and/or 
stiffness matrices using incomplete modal data 
developing inverse procedures which retain the 
connectivity of the physical mode 
investigation of the sensitivity on the resulting 
inverse methods to the quality and quantity of 
measured vibration data.
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