Acta Mechanica Slovaca 2009, 13(4):60-67 | DOI: 10.2478/v10147-010-0038-9

Uncertainties in Plant Optimum Definition

Milan Javùrek, Ivan Taufer

The article presents a method of simulated determination of the optimum regime in a reactor in which a competitive consecutive reaction A → B → C takes place. The algorithm of optimization method of Kiefer-Johnson is described (method with Fibonacci numbers using), and results of experimental determination of the optimum are given. Also described are the methods of determination of limit values of confidence intervals, and the confidence intervals - uncertainty of "measured" values are evaluated from experimental data. Good accordance between the experimental results and theoretical presumptions is stated.

Keywords: technological process, optimization, uncertainty of measurement, confidence interval

Published: October 31, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Javùrek, M., & Taufer, I. (2009). Uncertainties in Plant Optimum Definition. Acta Mechanica Slovaca13(4), 60-67. doi: 10.2478/v10147-010-0038-9
Download citation

References

  1. Chudý V., Palenèár R., Kureková E., Halaj M., Measurements of Technological Quantities (in Slovak), Bratislava, Slovak Technological University Bratislava, 1999, 688 p., ISBN 80-227-1275-2, http://www.kam.sjf.stuba.sk/katedra/publikacie/edutrac/mtv/ucebnica/obsah.htm.
  2. Drábek O., Taufer I., Automated Control Systems of Technological Processes (in Czech), Pardubice, V©CHT Pardubice, 1990, 90 p., ISBN 80-85113-16-3.
  3. Hrubina K., Zoebel D., Heilioe M., Capel M.I., Taufer I., Krejèí S., Bradley S., Hrehová S., ©ebej P., Mathematical Modelling of Technological Processes, Pre¹ov, Faculty of Manufacturing Technologies, Technical University Ko¹ice, 2001, 216 p., ISBN 80-88941-18-0.
  4. Kubanová J., Statistical Methods for Economical and Technological Practice (in Czech), Bratislava, STATIS, 2004, 249 p., ISBN 80-85659-37-9.
  5. Meloun M., Militký J., Statistical Analysis of Experimental Data (in Czech), Prague, Academia, 2004, 953 p., ISBN 80-200-1254-0.
  6. Olehla M., Vìchet V., Olehla J., Dealing with Problems of Mathematical Statistics in FORTRAN Language, Prague, NADAS, 1982, 368 p., OD-31-035-82-01-13.
  7. Taufer I., Kotyk J., Hrubina K., Taufer J., Algorithms and Algorithmization, Development Diagrams, Collection of Exercises with Key (in Czech), Pardubice, University of Pardubice, 2009, 94 p., ISBN 978-80-7395-182-5.
  8. Taufer I., Krejèí S., Javùrek M., Laboratory Exercises OPTIMIZATION, Methods of Non-Linear Programming (in Czech), Pardubice, Institute of Chemical Technology, 1993.
  9. Scales L.E., Introduction to Non-linear Optimization, Sutton, Surey, MacMillan Publishers Ltd., 1985, 243 p., ISBN 0-333-32553-2.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.