Acta Mechanica Slovaca 2024, 28(4):44-52 | DOI: 10.21496/ams.2024.029

Finite Element Analysis of Hydroxyapatite-Coated Titanium and Steel Hip Implants: Impacts on Stress Redistribution

Ismail Boudjemaa1, Omar Khatir2, *, Abdelkader Benkhettou2, Atef Hamada3, Abderahmene Sahli2
1 Faculty of Mechanical Engineering, University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB), El Mnaouer, BP1505, Bir El Djir 31000, Oran, Algeria
2 Department of Mechanical Engineering, Laboratory Mechanics Physics of Materials (LMPM), University of Sidi Bel Abbes, BP 89, cite Ben M'hidi, Sidi Bel Abbes, 22000, Algeria
3 Kerttu Saalasti Institute, Future Manufacturing Technologies (FMT), University of Oulu, Pajatie 5, Nivala, 85500, Finland

This stress redistribution was consistent across both material types, highlighting the coatings' role in enhancing the load-bearing capacity of the implants. Furthermore, titanium implants exhibited lower stress concentrations compared to steel implants, confirming titanium's superior mechanical properties and biocompatibility. These findings suggest that the combination of titanium implants with HA coatings can substantially improve implant durability and performance, providing critical insights for optimizing hip implant designs to enhance patient outcomes. This study employs the Finite Element Method (FEM) to analyse and to mitigate stresses on hip implants, focusing specifically on the impact of Hydroxyapatite (HA) coatings on stress distribution. We examined both steel and titanium implants to assess the influence of material properties on stress patterns within the implant components. Our results demonstrated that HA coatings effectively shifted peak stress concentrations from the implant stem to the coating itself, leading to a significant reduction in overall stress levels. Specifically, the maximum stress in the steel stem without coating (model 1) decreased from 140.6 MPa to 66.1 MPa with the addition of the HA coating (model 2). Similarly, the maximum stress in the Ti-6Al-4V stem without coating (model 3) reduced from 96.9 MPa to 51.9 MPa with the coating (model 4). This stress redistribution was consistent across both material types, highlighting the coatings' role in enhancing the load-bearing capacity of the implants. Furthermore, titanium implants exhibited lower stress concentrations compared to steel implants, confirming titanium's superior mechanical properties and biocompatibility. These findings suggest that the combination of titanium implants with HA coatings can substantially improve implant durability and performance, providing critical insights for optimizing hip implant designs to enhance patient outcomes.

Keywords: Prostheses; Hydroxyapatite coatings; Biocompatibility; Mechanical performance; Finite element modelling

Received: October 3, 2024; Revised: December 5, 2024; Accepted: December 16, 2024; Published: December 1, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Boudjemaa, I., Khatir, O., Benkhettou, A., Hamada, A., & Sahli, A. (2024). Finite Element Analysis of Hydroxyapatite-Coated Titanium and Steel Hip Implants: Impacts on Stress Redistribution. Acta Mechanica Slovaca28(4), 44-52. doi: 10.21496/ams.2024.029
Download citation

References

  1. Dumbleton, J. H. (1988). The clinical significance of wear in total hip and knee prostheses. Journal of biomaterials applications, 3(1), 3-32.‏ Go to original source...
  2. Darwich A, Nazha H, Abbas W (2019) Numerical study of stress shielding evaluation of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials. Biomed res 30(1):169-174. Go to original source...
  3. Kayabasi, O., & Erzincanli, F. (2006). Finite element modelling and analysis of a new cemented hip prosthesis. Advances in Engineering Software, 37(7), 477-483.‏ Go to original source...
  4. Hanusovį P, Palček P, Uhrķčik M, Meli¹ķk M (2020) A study of hip joint replacement failure. Mater Today: Proc 32:179-182. https://doi.org/10.1016/j.matpr.2020.04.532. Go to original source...
  5. Arcos, D., & Vallet-Regķ, M. (2020). Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B, 8(9), 1781-1800.‏ Go to original source...
  6. zhang, S. (2013). Hydroxyapatite coatings for biomedical applications. Taylor & Francis
  7. Awasthi, S., Pandey, S. K., Arunan, E., & Srivastava, C. (2021). A review on hydroxyapatite coatings for the biomedical applications: Experimental and theoretical perspectives. Journal of materials chemistry B, 9(2), 228-249.‏ Go to original source...
  8. Gao, X., Zhao, Y., Wang, M., Liu, Z., & Liu, C. (2022). Parametric design of hip implant with gradient porous structure. Frontiers in Bioengineering and Biotechnology, 10, 850184.‏ Go to original source...
  9. Khatir, O., Fekih, S. M., Sahli, A., Boudjemaa, I., Benkhettou, A., Salem, M., & Bouiadjra, B. B. (2024). Optimizing mechanical behavior of middle ear prosthesis using finite element method with material degradation FGM in three functions. Mechanics of Advanced Materials and Structures, 1-10. https://doi.org/10.1080/15376494.2024.2350677 Go to original source...
  10. Choroszyński, M., Choroszyński, M. R., & Skrzypek, S. J. (2017). Biomaterials for hip implants-important considerations relating to the choice of materials. Bio-Algorithms and Med-Systems, 13(3), 133-145.‏ Go to original source...
  11. Khatir, O., Fekih, S. M., Sahli, A., Boudjemaa, I., Benkhettou, (2024). Optimizing Torp middle ear prosthesis material performance using FGM material degradation approach. Journal of the Serbian Society for ComputationalMechanics. http://dx.doi.org/10.24874/jsscm.2024.18.01.07 Go to original source...
  12. Khatir, O., Sidi Mohamed, F., Albedah, A., Hamada, A., Paw³owski, £., Sahli, A., … Bouiadjra, B. B. (2024). Enhancing middle ear implants: Study of biocompatible materials with hydroxyapatite coating. Mechanics of Advanced Materials and Structures, 1-8. https://doi.org/10.1080/15376494.2024.2396571 Go to original source...
  13. Boudjemaa, I., Khatir, O., Hamada, A., Benkhettou, A., Sahli, A., Abdoune, Y., & Ghali, D. (2024). Enhanced orthopedic implant design for transfemoral amputation incorporating a honeycomb structure technology. Mechanics of Advanced Materials and Structures, 1-7. https://doi.org/10.1080/15376494.2024.2394988 Go to original source...
  14. Benkhettou, A., Khatir, O., Boudjemaa, I., Sahli, A., Bouiadjra, B. A. B., & Benbarek, S. (2024). Multi-objective optimization of prosthetic multi-cells foam liner. Mechanics of Advanced Materials and Structures, 1-8. https://doi.org/10.1080/15376494.2024.2370035 Go to original source...
  15. Fekih, S. M.,Khatir, O., Sahli, A., Boudjemaa, I., Benkhettou, A. (2024). Evaluation and Comparison of the Mechanical Behaviors of a Middle Ear Prosthesis using the Finite Element Method. Acta Mechanica Slovaca, 28 (1): 38 - 44, March 2024 https://doi.org/10.21496/ams.2024.006 Go to original source...
  16. Benkhettou, A., Khatir, O., Boudjemaa, I., Hamada, A., Sahli, A., Bouiadjra, B. A. B., & Benbarek, S. (2024). Enhancing pressure ulcer prevention through optimized design of a multi-cellular foam mattress. Mechanics of Advanced Materials and Structures, 1-9. https://doi.org/10.1080/15376494.2024.2423392 Go to original source...
  17. Khatir, O., Fekih, S. M., Hamada, A., Sahli, Murat, Y., A., Benkhettou, A., Boudjemaa, I., Adel, T. & Bouiadjra, B. A. B. (2024). Study of the Behavior of TORP Middle Ear Prostheses of Various Lengths by the Finite Element Method. Mechanics of Advanced Materials and Structures https://doi.org/10.1080/15376494.2024.2438903 Go to original source...
  18. Ramos, A. and Simoes, J. A. (2006). Tetrahedral versus hexahedral finite elements in numerical modeling of the proximal femur, Medical engineering and physics, 28(9), pp. 916-924. https://doi.org/ 10.1016/j.medengphy.2005.12.006. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.