Acta Mechanica Slovaca 2024, 28(4):14-24 | DOI: 10.21496/ams.2024.018
Numerical Study of Tensile-shear Fracture Behaviour of Resistance Spot Welded Sheet Steel with DP 450 and DP 980
- Department of Mechanical Engineering, Laboratory Mechanics Physics of Materials (LMPM), University of SidiBel Abbes, BP 89, cite Ben M'hidi, SidiBel Abbes, 22000, Algeria
The use of resistance electric welding to assemble metal plates is of crucial importance in various industrial sectors. Studying the fracture behavior of resistance-welded components, especially alloys DP450 and DP980, is crucial to ensure the reliability and durability of welded structures in demanding industrial applications. When components are subjected to mechanical loads, the resulting stresses can exceed tolerable limits, leading to the initiation of damage and, ultimately, fracture. A comprehensive investigation into the fracture behavior of resistance-welded components using DP 450 and DP 980 alloys will provide a better understanding of the fracture mechanisms associated with these alloys. This will offer valuable insights for optimizing welding parameters, selecting materials, and designing components to minimize the risks of premature fracture. In this study, we will focus on the implications of the crack detected at the base metal level, as it is identified as the initial damaged material in the BM-HAZ-MM sequence. This crack, with a predefined size (10mm), will be subjected to continuous loading to analyze the evolution of the J parameter. The objective of this study is to track the crack's progression and assess its impact on material performance. By monitoring the J parameter during continuous loading, we will quantify crack advancement and gain crucial information about its propagation. This will enable us to implement preventive measures and design suitable solutions to enhance the base metal's strength. This chapter marks a significant milestone in our study, as it will provide deeper insights into the failures of the base material.
Keywords: keyword; Dual-phase, Finite Element Method, spot welding, tensile shear Strength
Received: April 16, 2024; Revised: June 20, 2024; Accepted: July 1, 2024; Published: December 1, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- FeujofackKemda, B. V. (2020). Modélisation, optimisation et surveillance en temps réel du procédé de soudage par résistance par points appliqué aux plaques minces pour l'industrie automobile (Doctoral dissertation, Université du Québec à Rimouski).
- Dickinson, D. W., Franklin, J. E., &Stanya, A. (1980). Characterization of spot welding behavior by dynamic electrical parameter monitoring. Welding Journal, 59(6), 170.
- Aslanlar, S., Ogur, A., Ozsarac, U., &Ilhan, E. (2008). Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding. Materials & Design, 29(7), 1427-1431.
Go to original source...
- Luo, Y., Liu, J., Xu, H., Xiong, C., & Liu, L. (2009). Regression modeling and process analysis of resistance spot welding on galvanized steel sheet. Materials & Design, 30(7), 2547-2555.
Go to original source...
- Hamidinejad, S. M., Kolahan, F., &Kokabi, A. H. (2012). The modeling and process analysis of resistance spot welding on galvanized steel sheets used in car body manufacturing. Materials & Design, 34, 759-767.
Go to original source...
- Khan, J. A., Xu, L., Chao, Y. J., & Broach, K. (2000). Numerical simulation of resistance spot welding process. Numerical Heat Transfer: Part A: Applications, 37(5), 425-446.
Go to original source...
- M. S. Khan,S. D. Bhole, D. L. Chen,E. Biro,G. Boudreau&J. van Deventer. (2013).Welding behaviour, microstructure and mechanical properties of dissimilar resistance spot welds between galvannealed HSLA350 and DP600 steels.Science and Technology of Welding and Joining , volume 14, NO 7 616
Go to original source...
- Wang, J., Wang, H. P., Lu, F., Carlson, B. E., & Sigler, D. R. (2015). Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model. International Journal of Heat and Mass Transfer, 89, 1061-1072.
Go to original source...
- Baltazar Hernandez, V. H., Panda, S. K., Okita, Y., & Zhou, N. Y. (2010). A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation. Journal of Materials Science, 45, 1638-1647.
Go to original source...
- Bagheri, B., Abbasi, M., Abdollahzadeh, A., &Moghaddam, A. O. (2021). Numerical modeling and experimental analysisof water jet spot welding and friction stir spot welding: a comparative study. Journal of Materials Engineering and Performance, 30, 1454-1471.
Go to original source...
- Brizes, E., Jaskowiak, J., Abke, T., Ghassemi-Armaki, H., & Ramirez, A. J. (2021). Evaluation of heat transfer within numerical models of resistance spot welding using high-speed thermography. Journal of Materials Processing Technology, 297, 117276.
Go to original source...
- Sam, S., &Shome, M. (2010). Static and fatigue performance of weld bonded dual phase steel sheets. Science and Technology of Welding and Joining, 15(3), 242-247.
Go to original source...
- Eshraghi, M., Tschopp, M. A., Zaeem, M. A., &Felicelli, S. D. (2014). Effect of resistance spot welding parameters on weld pool properties in a DP600 dual-phase steel: A parametric study using thermomechanically-coupled finite element analysis. Materials & Design (1980-2015), 56, 387-397.
Go to original source...
- Wan, X., Wang, Y., & Zhang, P. (2017). Numerical simulation on deformation and stress variation in resistance spot welding of dual-phase steel. The International Journal of Advanced Manufacturing Technology, 92, 2619-2629.
Go to original source...
- Ren, S., Huang, W., Ma, N., Watanabe, G., Zhang, Z., & Deng, W. (2023). Numerical modeling from process to residual stress induced in resistance spot welding of DP980 steel. The International Journal of Advanced Manufacturing Technology, 125(7), 3563-3576.
Go to original source...
- Song, J., Zhu, L., Wang, J., Lu, Y., Ma, C., Han, J., & Jiang, Z. (2023). Physical simulation and numerical simulation of flash butt welding for innovative dual phase steel DP590: a comparative study. Materials, 16(9), 3513.
Go to original source...
- Demir, B., Ali, K. B., Gürün, H., &Acarer, M. (2023). An investigation of the shearing performance and sheared surface characterisation of ultra-strength DP steel-Al explosive welded plate composite. The International Journal of Advanced Manufacturing Technology, 126(5), 1845-1861.
Go to original source...
- M., Goktas, M., Acarer, M., &Demir, B. (2023). Finite element modelling of the fatigue damage in an explosive welded Al-dual-phase steel. Materials Testing, 65(5), 787-801.
Go to original source...
- Rajalingam, P., Rajakumar, S., Balasubramanian, V., Sonar, T., &Kavitha, S. (2023). Tensile shear fracture load bearing capability, softening of HAZ and microstructural characteristics of resistance spot welded DP-1000 steel joints. Materials Testing, 65(1), 94-110
Go to original source...
- Gandhi, A. D., Kundu, A., Kumar, R., &Chakraborti, P. C. (2023). Effect of Heat Input on the Weld Thermal Cycle, Microstructure, Tensile Damage and Fracture Behavior of Pulsed Laser-Welded Dual-Phase Steel. Journal of Materials Engineering and Performance, 1-18.
Go to original source...
- Rao, Z., Liu, L., Wang, Y., Ou, L., & Liu, J. (2021). Preventingnugget shifting in joining of dissimilar steels via resistance element welding: a numerical simulation. The International Journal of Advanced Manufacturing Technology, 117, 227-241.
Go to original source...
- Reddy Gillela, P. K., Jaidi, J., Gude, V., Pathak, S. K., & Srivastava, D. (2023). A numerical study on contact conditions, dynamic resistance, and nugget size of resistance spot weld joints of AISI 1008 steel sheets. Numerical Heat Transfer, Part A: Applications, 84(2), 122-140.
Go to original source...
- Zhou, K., Yu, W., Wang, G., &Ivanov, M. (2023). Comparative analysis between multi-pulse and constant welding current for resistance spot welding process. Journal of Materials Science, 58(6), 2853-2875.
Go to original source...
- Tan, N., Hong, J., Lei, M., Jin, X., Zheng, H., &Luo, Z. (2020). Tensile-shear fracture behaviour of resistance spot-welded hot stamping sheet steel with Al-Si coating. Science and Technology of Welding and Joining, 25(6), 525-534.
Go to original source...
- Palmonella, M., Friswell, M. I., Mottershead, J. E., & Lees, A. W. (2005). Finite element models of spot welds in structural dynamics: review and updating. Computers & structures, 83(8-9), 648-661.
Go to original source...
- Dancette, S. (2009). Comportement mécanique des soudures par points: mécanismes et stratégies de prédiction dans le cas des tôles en acier pour automobile. Lyon: École doctorale matériaux de Lyon.
- LEBBAL, H. (2016). Analyse expérimentale et modélisation du comportement thermodynamique des aciers inoxydables et dual phase. Application au procédé du soudage par résistance par point (Doctoral dissertation).
- Kumar, P., Pathak, H., & Singh, A. (2021). Fatigue crack growth behavior of thermo-mechanically processed AA 5754: experiment and extended finite element method simulation. Mechanics of Advanced Materials and Structures, 28(1), 88-101.
Go to original source...
- Nielsen, C. V., Friis, K. S., Zhang, W., & Bay, N. (2011). Three-sheet spot welding of advanced high-strength steels. Welding journal, 90(2), 32s-40s.
- Bro¾ek, M., Nováková, A., &Niedermeier, O. (2017). Resistance Spot Welding of Steel Sheets of the Same and Different Thickness, 65(3).
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.