Acta Mechanica Slovaca 2024, 28(2):68-74 | DOI: 10.21496/ams.2024.019
Three-dimensional Bioprinting with the Use of Induced Pluripotent Stem Cells in Regenerative Medicine
- Technical University of Košice, Košice Letná 9 04001, Slovakia
The field of regenerative medicine has witnessed significant advancements in recent years due to the emergence of three-dimensional (3D) bioprinting technology. One promising approach is the utilization of induced pluripotent stem cells (iPSCs) as a cell source for bioprinting, allowing for the construction of complex tissue structures. iPSCs hold immense potential as they can be derived from a patient's own cells, enabling personalized therapies, and eliminating the risk of immune rejection. The integration of iPSCs with 3D bioprinting technology expands the possibilities of regenerating damaged tissues and organs. iPSCs can be programmed to differentiate into various cell types, offering the ability to generate specific tissue structures. The bioprinting process involves the precise deposition of cells, growth factors, and biomaterials in a layer-by-layer manner, mimicking native tissue architecture. This spatial control allows for the creation of intricate tissue constructs with high fidelity, enhancing their integration within the host tissue upon implantation. This review aims to review the current progress and challenges in utilizing 3D bioprinting with iPSCs in regenerative medicine.
Keywords: 3D bioprinting; iPSCs; tissue engineering; regenerative medicine
Received: May 28, 2024; Revised: May 28, 2024; Accepted: July 1, 2024; Published: June 14, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- ] Boulting, G. L.; Kiskinis, E.; Croft, G. F.; Amoroso, M. W.; Oakley, D. H.; Wainger, B. J.; Williams, D. J.; Kahler, D. J.; Yamaki, M.; Davidow, L.; Rodolfa, C. T.; Dimos, J. T.; Mikkilineni, S.; MacDermott, A. B.; Woolf, C. J.; Henderson, C. E.; Wichterle, H.; Eggan, K. (2011) A Functionally Characterized Test Set of Human Induced Pluripotent Stem Cells. Nature Biotechnology, 29 (3), 279-286. https://doi.org/10.1038/nbt.1783.
Go to original source...
- ] Kim, I. G.; Park, S. A.; Lee, S.-H.; Choi, J. S.; Cho, H.; Lee, S. J.; Kwon, Y.-W.; Kwon, S. K. (2020) Transplantation of a 3D-Printed Tracheal Graft Combined with iPS Cell-Derived MSCs and Chondrocytes. Scientific Reports, 10 (1), 4326. https://doi.org/10.1038/s41598-020-61405-4.
Go to original source...
- ] Petrochenko, P. E.; Torgersen, J.; Gruber, P.; Hicks, L. A.; Zheng, J.; Kumar, G.; Narayan, R. J.; Goering, P. L.; Liska, R.; Stampfl, J.; Ovsianikov, (2015) A. Laser 3D Printing with Sub-Microscale Resolution of Porous Elastomeric Scaffolds for Supporting Human Bone Stem Cells. Advanced Healthcare Materials, 4 (5), 739-747. https://doi.org/10.1002/adhm.201400442.
Go to original source...
- ] Lowry, W. E.; Richter, L.; Yachechko, R.; Pyle, A. D.; Tchieu, J.; Sridharan, R.; Clark, A. T.; Plath, K. (2018) Generation of Human Induced Pluripotent Stem Cells from Dermal Fibroblasts. Proceedings of the National Academy of Sciences, 105 (8),2883-2888. https://doi.org/10.1073/pnas.0711983105.
Go to original source...
- ] Karagiannis, P.; Takahashi, K.; Saito, M.; Yoshida, Y.; Okita, K.; Watanabe, A.; Inoue, H.; Yamashita, J. K.; Todani, M.; Nakagawa, M.; Osawa, M.; Yashiro, Y.; Yamanaka, S.; Osafune, K. (2019) Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 99 (1), 79-114. https://doi.org/10.1152/physrev.00039.2017.
Go to original source...
- ] Ji, W.; Hou, B.; Lin, W.; Wang, L.; Zheng, W.; Li, W.; Zheng, J.; Wen, X.; He, P. (2020) 3D Bioprinting a Human iPSC-Derived MSC-Loaded Scaffold for Repair of the Uterine Endometrium. Acta Biomaterialia, 116, 268-284. https://doi.org/10.1016/j.actbio.2020.09.012.
Go to original source...
- ] Romanazzo, S.; Nemec, S.; Roohani, I. (2019) iPSC Bioprinting: Where Are We At? Materials, 12 (15). https://doi.org/10.3390/ma12152453.
Go to original source...
- ] Joung, D.; Truong, V.; Neitzke, C. C.; Guo, S.-Z.; Walsh, P. J.; Monat, J. R.; Meng, F.; Park, S. H.; Dutton, J. R.; Parr, A. M.; McAlpine, M. C. (2018) 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds. Advanced Functional Materials, 28 (39), 1801850. https://doi.org/10.1002/adfm.201801850.
Go to original source...
- ] Noor, N.; Shapira, A.; Edri, R.; Gal, I.; Wertheim, L.; Dvir, T. (2019) 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Advanced Science, 6 (11), 1900344. https://doi.org/10.1002/advs.201900344.
Go to original source...
- ] Fantini, V.; Bordoni, M.; Scocozza, F.; Conti, M.; Scarian, E.; Carelli, S.; Di Giulio, A. M.; Marconi, S.; Pansarasa, O.; Auricchio, F.; Cereda, C. (2019) Bioink Composition and Printing Parameters for 3D Modeling Neural Tissue. Cells, 8 (8). https://doi.org/10.3390/cells8080830.
Go to original source...
- ] Singh, Y. P.; Bandyopadhyay, A.; Mandal, B. B. (2019) 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces, 11 (37), 33684-33696. https://doi.org/10.1021/acsami.9b11644.
Go to original source...
- ] Chae, S.; Cho, D.-W. (2022) Biomaterial-Based 3D Bioprinting Strategy for Orthopedic Tissue Engineering. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.08.004.
Go to original source...
- ] Tasoglu, S.; Demirci, U. Bioprinting for Stem Cell Research. Trends in Biotechnology 2013, 31 (1), 10-19. https://doi.org/10.1016/j.tibtech.2012.10.005.
Go to original source...
- ] Li, X.; Liu, B.; Pei, B.; Chen, J.; Zhou, D.; Peng, J.; Zhang, X.; Jia, W.; Xu, T. (2020) Inkjet Bioprinting of Biomaterials. Chem. Rev., 120 (19), 10793-10833. https://doi.org/10.1021/acs.chemrev.0c00008.
Go to original source...
- ] Kumar, P.; Ebbens, S.; Zhao, X. (2021) Inkjet Printing of Mammalian Cells - Theory and Applications. Bioprinting, 23, e00157. https://doi.org/10.1016/j.bprint.2021.e00157.
Go to original source...
- ] Wang, Z.; Kapadia, W.; Li, C.; Lin, F.; Pereira, R. F.; Granja, P.L.; Sarmento, B.; Cui, W. (2021) Tissue-Specific Engineering: 3D Bioprinting in Regenerative Medicine. Journal of Controlled Release, 329, 237-256. https://doi.org/10.1016/j.jconrel.2020.11.044.
Go to original source...
- ] Nguyen, D.; Hägg, D. A.; Forsman, A.; Ekholm, J.; Nimkingratana, P.; Brantsing, C.; Kalogeropoulos, T.; Zaunz, S.; Concaro, S.; Brittberg, M.; Lindahl, A.; Gatenholm, P.; Enejder, A.; Simonsson, S. (2017) Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Scientific Reports, 7 (1), 658. https://doi.org/10.1038/s41598-017-00690-y.
Go to original source...
- ] De la Vega, L.; A. Rosas Gómez, D.; Abelseth, E.; Abelseth, L.; Allisson da Silva, V.; Willerth, S. M. 3D (2018) Bioprinting Human Induced Pluripotent Stem Cell-Derived Neural Tissues Using a Novel Lab-on-a-Printer Technology. Applied Sciences, 8 (12). https://doi.org/10.3390/app8122414.
Go to original source...
- ] Zhang, Y. S.; Haghiashtiani, G.; Hübscher, T.; Kelly, D. J.; Lee, J. M.; Lutolf, M.; McAlpine, M. C.; Yeong, W. Y.; Zenobi-Wong, M.; Malda, J. (2021) 3D Extrusion Bioprinting. Nature Reviews Methods Primers, 1 (1), 75. https://doi.org/10.1038/s43586-021-00073-8.
Go to original source...
- ] Tsai, P.-J.; Lee, I.-C.; Yen, M.-H.; Ethan Li, Y.-C. (2021) Development and Customization of a Concentration Gradient Microgenerator by Extrusion 3D Printing for Drug Testing in Laboratory Studies. Bioprinting, 23, e00160. https://doi.org/10.1016/j.bprint.2021.e00160.
Go to original source...
- ] Jessop, Z. M.; Al-Sabah, A.; Gao, N.; Kyle, S.; Thomas, B.; Badiei, N.; Hawkins, K.; Whitaker, I. S. (2019) Printability of Pulp Derived Crystal, Fibril and Blend Nanocellulose-Alginate Bioinks for Extrusion 3D Bioprinting. Biofabrication, 11 (4), 045006. https://doi.org/10.1088/1758-5090/ab0631.
Go to original source...
- ] Dogan, L.; Scheuring, R.; Wagner, N.; Ueda, Y.; Schmidt, S.; Wörsdörfer, P.; Groll, J.; Ergün, S. (2021) Human iPSC-Derived Mesodermal Progenitor Cells Preserve Their Vasculogenesis Potential after Extrusion and Form Hierarchically Organized Blood Vessels. Biofabrication, 13 (4), 045028.
Go to original source...
- ] Bilkic, I.; Sotelo, D.; Anujarerat, S.; Ortiz, N. R.; Alonzo, M.; El Khoury, R.; Loyola, C. C.; Joddar, B. (2022) Development of an Extrusion-Based 3D-Printing Strategy for Clustering of Human Neural Progenitor Cells. Heliyon, 8 (12), e12250. https://doi.org/10.1016/j.heliyon.2022.e12250.
Go to original source...
- ] Kumar, H.; Kim, K. (2020) Stereolithography 3D Bioprinting. In 3D Bioprinting: Principles and Protocols; Crook, J. M., Ed.; Springer US: New York, NY,; pp 93-108. https://doi.org/10.1007/978-1-0716-0520-2_6.
Go to original source...
- ] Ding, S.; Feng, L.; Wu, J.; Zhu, F.; Tan, Z.; Yao, R. (2018) Bioprinting of Stem Cells: Interplay of Bioprinting Process, Bioinks, and Stem Cell Properties. ACS Biomater. Sci. Eng., 4 (9), 3108-3124. https://doi.org/10.1021/acsbiomaterials.8b00399.
Go to original source...
- ] Gu, Q.; Tomaskovic-Crook, E.; Wallace, G. G.; Crook, J. M. (2017) 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. Advanced Healthcare Materials, 6 (17), 1700175. https://doi.org/10.1002/adhm.201700175.
Go to original source...
- ] Wang, Z.; Abdulla, R.; Parker, B.; Samanipour, R.; Ghosh, S.; Kim, K. (2015) A Simple and High-Resolution Stereolithography-Based 3D Bioprinting System Using Visible Light Crosslinkable Bioinks. Biofabrication, 7 (4), 045009. https://doi.org/10.1088/1758-5090/7/4/045009.
Go to original source...
- ] Grigoryan, B.; Sazer, D. W.; Avila, A.; Albritton, J. L.; Padhye, A.; Ta, A. H.; Greenfield, P. T.; Gibbons, D. L.; Miller, J. S. (2021) Development, Characterization, and Applications of Multi-Material Stereolithography Bioprinting. Scientific Reports, 11 (1), 3171. https://doi.org/10.1038/s41598-021-82102-w.
Go to original source...
- ] Zhang, Y.; Kumar, P.; Lv, S.; Xiong, D.; Zhao, H.; Cai, Z.; Zhao, X. (2021) Recent Advances in 3D Bioprinting of Vascularized Tissues. Materials & Design, 199, 109398. https://doi.org/10.1016/j.matdes.2020.109398.
Go to original source...
- ] Gopinathan, J.; Noh, I. (2018) Recent Trends in Bioinks for 3D Printing. Biomaterials Research, 22 (1), 11. https://doi.org/10.1186/s40824-018-0122-1.
Go to original source...
- ] Eswaramoorthy, S. D.; Ramakrishna, S.; Rath, S. N. (2019) Recent Advances in Three-Dimensional Bioprinting of Stem Cells. Journal of Tissue Engineering and Regenerative Medicine, 13 (6), 908-924. https://doi.org/10.1002/term.2839.
Go to original source...
- ] Maiullari, F.; Costantini, M.; Milan, M.; Pace, V.; Chirivì, M.; Maiullari, S.; Rainer, A.; Baci, D.; Marei, H. E.-S.; Seliktar, D.; Gargioli, C.; Bearzi, C.; Rizzi, R. (2018) A Multi-Cellular 3D Bioprinting Approach for Vascularized Heart Tissue Engineering Based on HUVECs and iPSC-Derived Cardiomyocytes. Scientific Reports, 8 (1), 13532. https://doi.org/10.1038/s41598-018-31848-x.
Go to original source...
- ] Ozbolat, I. T.; Peng, W.; Ozbolat, V. (2016) Application Areas of 3D Bioprinting. Drug Discovery Today, 21 (8), 1257-1271. https://doi.org/10.1016/j.drudis.2016.04.006.
Go to original source...
- ] Persaud, A.; Maus, A.; Strait, L.; Zhu, D. (2022) 3D Bioprinting with Live Cells. Engineered Regeneration, 3. https://doi.org/10.1016/j.engreg.2022.07.002.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.