Acta Mechanica Slovaca 2023, 27(3):18-26 | DOI: 10.21496/ams.2023.022
Machining of Austenitic Stainless Steels - the Influence of Various Factors on the Machining Result
- Technical University of Kosice, Faculty of Mechanical Engineering, Department of Safety and Quality, Letna 1/9, 042 00 Kosice - Sever, Slovak Republic
In today's world, AISI stainless steel accounts for almost half of the world's production and consumption for industrial purposes. Stainless steel is the most popular alloy widely used in the production of parts due to its properties such as high strength, high corrosion resistance or high ductility, but they are hard materials to machine from the metallurgical aspect, such as low thermal conductivity, chip formation, cutting tool wear. The focus of the paper is on machining stainless steel - a review, where various machining problems are discussed by different researchers and their probable solution can provide help to reduce tool wear, increase corrosion resistance, high surface quality finish by reducing machining complexity. The article also provides a detailed specification of the most important factors that significantly affect the lifespan of tools used for machining austenitic stainless steel.
Keywords: AISI 304; Machinability of Stainless-steel; Quality; Surface Integrity; Tool Wear
Received: March 21, 2023; Revised: April 23, 2023; Accepted: April 26, 2023; Published: September 18, 2023 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abou-El-Hossein, K. A., & Yahya, Z. (2005). High-speed end-milling of AISI 304 stainless steels using new geometrically developed carbide inserts. Journal of materials processing technology, 162, 596-602. doi.org/10.1016/j.jmatprotec.2005.02.129
Go to original source...
- Akasawa, T., Sakurai, H., Nakamura, M., Tanaka, T., & Takano, K. (2003). Effects of free-cutting additives on the machinability of austenitic stainless steels. Journal of Material Processing Technology(143/144), 66-71. doi.org/10.1016/S0924-0136(03)00321-2
Go to original source...
- Nagyová, A., Pačaiová, H., Markulik, ©., Turisová, R., Kozel, R., & Dľugan, J. (2021). Design of a model for risk reduction in project management in small and medium-sized enterprises. Symmetry, 13(5), 763. https://doi.org/10.3390/sym13050763
Go to original source...
- Al-Ahmari, A. (2007). Predictive machinability models for a selected hard material in turning operations. Journal of Materials Processing Technology, 190(1-3), 305-311. doi.org/10.1016/j.jmatprotec.2007.02.031
Go to original source...
- Ghionea, I., Ghionea, A., Cioboată, D., & Ćuković, S. (2016). Lathe machining in the era of Industry 4.0: Remanufactured lathe with integrated measurement system for CNC generation of the rolling surfaces for railway wheels. In Product Lifecycle Management for Digital Transformation of Industries: 13th IFIP WG 5.1 International Conference, PLM 2016, Columbia, SC, USA, July 11-13, 2016, Revised Selected Papers 13 (pp. 296-308). Springer International Publishing.
Go to original source...
- Benardos, P. G., & Vosniakos, G. C. (2003). Predicting surface roughness in machining: a review. International Journal of Machine Tools & Manufacture(43), 833-844. doi:10.1016/S0890-6955(03)00059-2
Go to original source...
- Béjar, S. M., Vilches, F. J., Gamboa, C. B., & Hurtado, L. S. (2019). Parametric analysis of macro-geometrical deviations in dry turning of UNS A97075 (Al-Zn) alloy. Metals, 9(11), 1141. doi:10.3390/met9111141
Go to original source...
- Timko, P., Drbúl, M., Richtárik, M., Svobodová, J., Beránek, L., & Bronček, J. (2021). Mapping of errors the geometric specification of the machining center. Transportation Research Procedia, 55, 576-583. doi.org/10.1016/j.trpro.2021.07.024
Go to original source...
- Rozdrigez Kaladhar, M., Subbaiah, K. V., & Rao, C. S. (2012). Machining of austenitic stainless steels-a review. International Journal of Machining and Machinability of Materials, 12(1-2), 178-192. doi.org/10.1504/IJMMM.2012.048564
Go to original source...
- Ciftci, İ. (2006). Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribology International, 39(6), 565-569. doi:10.1016/j.triboint.2005.05.005
Go to original source...
- Korkut, I., Kasap, M., Çiftçi, İ., & Şeker, l. (2004). Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Materials and Design, 25(4), 303-305. doi:10.1016/j.matdes.2003.10.011
Go to original source...
- Clares, J. M., Vazquez-Martinez, J. M., Gomez-Parra, A., Puerta, F. J., & Marcos, M. (2015, October). Experimental methodology for evaluating workpieces surface integrity in dry turning of aerospace alloys. In Proceedings of the 26th DAAAM International Symposium on Intelligent Manufacturing and Automation, Zadar, Croatia (pp. 21-24).
- Endrino, J. L., Fox-Rabinovich, G., & Gey, C. (2006). Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel. Surface and Coatings Technology, 200(24), 6840-6845. doi:10.1016/j.surfcoat.2005.10.030
Go to original source...
- Galanis, N., & Manolakos, D. (2010). Surface roughness prediction in turning of femoral head. The International Journal of Advanced Manufacturing Technology, 51(1), 79-86. doi:10.1007/s00170-010-2616-4
Go to original source...
- Chaudhari, K. K., Pathak, N., Himanshu, & Kumar, A. (2022). Machining of stainless steels - a review. International Journal of Research in Engineering and Science, 10(5), 48-55.
- Li, Z., & Wu, D. (2010). Effect of free cutting additives on machining characteristics of austenitic stainless steels. Journal of Materials Science & Technology, 26(9), 839-844. doi.org/10.1016/S1005-0302(10)60134-X
Go to original source...
- Kumar, A., Sharma, R., Kumar, S., & Verma, P. (2021). A review on machining performance of AISI 304 steel. Materials Today: Proceedings, 56(6). doi:10.1016/j.matpr.2021.11.003
Go to original source...
- Kuram, E., Ozcelik, B., Demirbas, E., & Şik, E. (2010). Effects of the cutting fluid types and cutting parameters on surface roughness and thrust force. Proceedings of the world congress on engineering. 2010. p. 978-988.
- Calle, L. M., MacDowell, L. G., & Vinje, R. (2004, March). Electrochemical Evaluation of Stainless Steels in Acidic Sodium Chloride Solutions. In CORROSION 2004. OnePetro.
- Cardoso, L. G., Madeira, D. S., Ricomini, T. E., Miranda, R. A., Brito, T. G., & Paiva, E. J. (2021). Optimization of machining parameters using response surface methodology with desirability function in turning duplex stainless steel UNS S32760. The International Journal of Advanced Manufacturing Technology, 117(5-6), 1633-1644. doi.org/10.1007/s00170-021-07690-3
Go to original source...
- 19 Lin, H. M. (2008). The study of high speed fine turning of austenitic stainless steel. Journal of Achievements in Materials and Manufacturing Engineering, 27(2), 191-194.
- Magadum, S., Kumar, A., & Srinivasa, C. (2014). Cryogenic machining of SS304 steel. Proceedings of the 5th International & 26th All India Manufacturing Technology,Guwahati, India, 12-14.
Go to original source...
- Touggui, Y., Uysal, A., Emiroglu, U., Belhadi, S., & Temmar, M. (2021). Evaluation of MQL performances using various nanofluids in turning of AISI 304 stainless steel. The International Journal of Advanced Manufacturing Technology, 115(11-12), 3983-3997. doi.org/10.1007/s00170-021-07448-x
Go to original source...
- Usman, M. M., Zou, P., Yang, Z., Lin, T., & Muhammad, I. (2022). Evaluation of micro-textured tool performance in ultrasonic elliptical vibration-assisted turning of 304 stainless steel. The International Journal of Advanced Manufacturing Technology, 121(7-8), 4403-4418. doi.org/10.1007/s00170-022-09539-9
Go to original source...
- Ren, X., Yang, W., He, L., Li, D., & Yuan, J. (2022). Effect of Expansion Deformation on the Mechanical Properties and Corrosion Resistance of an AISI 304 Stainless Steel Tube in Water from an Oilfield. Coatings, 12(10), 1415. doi:10.3390/coatings12101415
Go to original source...
- Caydas, U., & Ekici, S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 21(4), 1-12. doi:10.1007/s10845-010-0415-2
Go to original source...
- Tekiner, Z. & Yesilyurt, S. (2004). Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel. Materials and Design, 25(6), 507-513.
Go to original source...
- Özek, C., Hasçalik, A., Çaydaş, U., Karaca, F., & Ünal, E. (2006). Turning of AISI 304 austenitic stainless steel. Sigma, Journal of Engineering and Natural Sciences, 24(2), 117-121.
- Sensussi, G. H. (2007). Interaction effect of feed rate and cutting speed in CNC turning on chip micro hardness of 304 austenitic stainless steel. World Academy of Science, Engineering and Technology, 121-126. doi.org/10.5281/zenodo.1059691
- Trent, E. M., & Wright, P. K. (2015). Metal cutting (4th edition). Science of Sintering, 36(1), 54.
- Wagh, S. S., Kulkarni, A. P., & Sargade, V. G. (2013). Machinability studies of austenitic stainless steel (AISI 304) using PVD cathodic arc evaporation (CAE) system deposited AlCrN/TiAlN coated carbide inserts. Procedia Engineering, 64, 907-914. doi:10.1016/j.proeng.2013.09.167
Go to original source...
- Liang, C., Yu, S., Ma, Y., Li, C., & Wei, J. (2021). Theoretical and experimental studies of chatter in turning and machining stainless steel workpiece. The International Journal of Advanced Manufacturing Technology, 117, 3755-3776. doi.org/10.1007/s00170-021-06643-0
Go to original source...
- Sinay, J., Markulik, ©., & Pacaiova, H. (2017). Quality as a part of modern technology in the automotive industry. Smart City 360°. The second EAI International Summit, Smart City 360°, Bratislava, Slovakia, November 22-24, 2016.doi:10.4108/eai.14-2-2017.152167
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.