Acta Mechanica Slovaca 2023, 27(2):12-17 | DOI: 10.21496/ams.2023.015

Hydraulic Regularities of Fluidized Bed During Encapsulation of Organo-mineral Fertilizers

Ruslan Ostroha ORCID...1, *, Mykola Yukhymenko ORCID...1, Oleksandr Mandryka1
Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine

The advantages of using encapsulated organo-mineral fertilizers are presented. It is proposed to use a fluidized bed apparatus for coating carbamide granules with an organic shell. Importance of the fluidized bed hydraulic characteristics and their influence on the energy costs of the process are emphasized. Experimental study results prove that irrigation density of granular layer with the suspension has significant influence on the hydraulic resistance of a fluidized bed. It is proposed an analytical dependence for determining the hydraulic resistance of a fluidized bed, which takes into account influence of the organic suspension flow rate.

Keywords: organo-mineral fertilizers, granulator, fluidized bed; hydraulic resistance of the suspension

Received: February 11, 2023; Revised: March 20, 2023; Accepted: March 20, 2023; Published: June 15, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ostroha, R., Yukhymenko, M., & Mandryka, O. (2023). Hydraulic Regularities of Fluidized Bed During Encapsulation of Organo-mineral Fertilizers. Acta Mechanica Slovaca27(2), 12-17. doi: 10.21496/ams.2023.015
Download citation

References

  1. Yukhimenko, N., Vakal, S. (2016). The exergy analysis of energy efficiency of the technology of granulated phosphorus-potassium fertilizers. Eastern-European Journal of Enterprise Technologies, 5(6), 4-10. doi:10.15587/1729-4061.2016.77182 Go to original source...
  2. Moure Abelenda, A., Amaechi, C.V. (2022). Manufacturing of a granular fertilizer based on organic slurry and hardening agent. Inventions, 7, 26. https://doi.org/10.3390/inventions7010026 Go to original source...
  3. Nadhem, A.-K. M., Skydanenko, M., Ostroha, R., Neshta, A., Yukhymenko, M., Yakhnenko, S., Zabitsky, D., Yesypchuk, S., & Moskalchuk, O. (2022). Research of plate granulator operation modes in the production of coarse carbamide granules. Technology Audit and Production Reserves, 1(3(63), 12-15. https://doi.org/10.15587/2706-5448.2022.252367. Go to original source...
  4. Ravi Maharjan, Seong HoonJeong. (2022). Application of different models to evaluate the key factors of fluidized bed layering granulation and their influence on granule characteristics. Powder Technology, Volume 408, August 2022, 117737. https://doi.org/10.1016/j.powtec.117737 Go to original source...
  5. Ostroha, R., Yukhymenko, M., Bocko, J., Artyukhov, A., & Krmela, J. (2021). Determining the main regularities in the process of mineral fertilizer granule encapsulation in the fluidized bed apparatus. Eastern-European Journal of Enterprise Technologies, 4(6(112), 23-32. https://doi.org/10.15587/1729-4061.2021.239122 Go to original source...
  6. Kaza, S.R.V.N. (2008). Effect of the shape of the baffles on the hydrodynamics of a fluidized bed. Int. J. Chem. React. Eng., 6, 1-14. Go to original source...
  7. Sippola, P., Kolehmainen, J., Ozel, A., Liu, X., Saarenrinne, P., Sundaresan, S. (2018). Experimental and numerical study of wall layer development in a tribocharged fluidized bed. J. Fluid Mech., 849, 860-884. Go to original source...
  8. Richardson, J.F., Zaki, W.N. (1997). Sedimentation and fluidization: Part i. Chem. Eng. Res. Des., 75, S82-S100. Go to original source...
  9. Chen, X.Z., Shi, D.P., Gao, X., Luo, Z.H. (2011). A fundamental cfd study of the gas-solid flow field in fluidized bed polymerization reactors. Powder Technol., 205, 276-288. Go to original source...
  10. Islam, M.T., Nguyen, A.V. (2021). Effect of particle size and shape on liquid-solid fluidization in a hydrofloat cell. Powder Technol.,379, 560-575. Go to original source...
  11. Abdulrahman, A.A., Mahdy, O.S., Sabri, L.S., Sultan, A.J., Al-Naseri, H., Hasan, Z.W., Majdi, H.S., Ali, J.M. (2022). Experimental investigation and computational fluid dynamic simulation of hydrodynamics of liquid-solid fluidized beds. Chem. Engineering, 6, 37. https://doi.org/ 10.3390/chemengineering6030037 Go to original source...
  12. Ergun, S. (1952). Fluid flow through packed column. Chem. Eng. Prog., 48, 89-94.
  13. Peng, J., Sun, W., Xie, L., Han, H., Xiao, Y. (2022). An experimental study of pressure drop characteristics and flow resistance coefficient in a fluidized bed for coal particle fluidization. Minerals, 12, 289. https://doi.org/ 10.3390/min12030289 Go to original source...
  14. Geller, Y.A., Shatskikh, Y.V., Antanenkova, I.S. (2020). Research of air-fluidized bed in the drying process of granulated hydrophobic polymers. Journal of Physics: Conference Series, 1565, 012033. doi:10.1088/1742-6596/1565/1/012033 Go to original source...
  15. Monazam, E.R., Breault, R.W., Weber, J. (2017). Analysis of maximum pressure drop for a flat-base spouted fluid bed. Chemical Engineering Research and Design, Volume 122, Pages 43-51. https://doi.org/10.1016/j.cherd.2017.03.032 Go to original source...
  16. Yukhymenko, M., Artyukhov, A., Ostroha, R., Artyukhova, N., Krmela, J., Bocko, J. (2021). Multistage shelf devices with fluidized bed for heat-mass transfer processes: experimental studies and practical implementation. Appl. Sci., 11, 1159. https://doi.org/ 10.3390/app11031159 Go to original source...
  17. Teplitskii, Y.S., Kovenskii, V.I. (2001). Resistance of a circulating fluidized bed. Journal of Engineering Physics and Thermophysics 74, 86-93. https://doi.org/10.1023/A:1016630121519 Go to original source...
  18. Bakhronov, K.S., Khudoiberdieva, N.S. (2007). Hydraulic resistance of a granular bed in a rising liquid flow. Chem Petrol Eng 43, 716-719. https://doi.org/10.1007/s10556-007-0129-2 Go to original source...
  19. Yuksel, H., Nur Dirim, S. (2018). Agglomeration process in the fluidized bed, the effecting parameters and some applications. Croatian Journal of Food Technology, Biotechnology and Nutrition 13 (3-4), 159-163. https://doi.org/10.31895/hcptbn.13.3-4.10 Go to original source...
  20. Seyedin, S.H., Ardjmand, M., Safekordi, A.A., Raygan, S. (2017). Experimental investigation and CFD simulation of top spray fluidized bed coating system. Periodica Polytechnica Chemical Engineering, 61(2), 117-127. doi.org/10.3311/PPch.8611. Go to original source...
  21. Neugebauer, C., Bück, A., Kienle, A. (2020). Control of particle size and porosity in continuous fluidized-bed layering granulation processes. Chem. Eng. Technol, 43, No. 5, 813-818. doi: 10.1002/ceat.201900435. Go to original source...
  22. Dosta, M., Antonyuk, S., Heinrich, S. (2013). Detailed macroscopic flowsheet simulation of fluidized bed granulation process based on microscale models. In "The 14th International Conference on Fluidization - From Fundamentals to Products", J.A.M. Kuipers, Eindhoven University of Technology R.F.Mudde, Delft University of Technology J.R. van Ommen, Delft University of Technology N.G. Deen, Eindhoven University of Technology Eds, ECI Symposium Series. http://dc.engconfintl.org/ fluidization_xiv/49.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.