Acta Mechanica Slovaca 2022, 26(3):42-47 | DOI: 10.21496/ams.2023.005
Plates and Jaw Stress-Strain State in Case of a Lower Jaw Angular Fracture
- 1 Department of Pathology, Sumy State University University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine
- 2 Department of Chemical Engineering, Sumy State University
- 3 Department of Oncology , Sumy State University University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine
- 4 Department of Computational Mechanics named after Volodymyr Martsynkovskyy, Sumy State University, 2, Rymskogo-Korsakova, Sumy, Ukraine
- 5 Department of Manufacturing Engineering, Machines and Tools, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine
- 6 Department of Dentistry, Sumy State University University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine
One of the most pressing issues of maxillofacial surgery is the traumatism of the facial bones. At present, titanium plates with screw joints are the commonest for fixing jaw fragments in maxillofacial surgery. The cause of complications in osteosynthesis with titanium is the force generated by the masticatory muscles, transmitted through the plate and jaw fragments, and causing looseness of the screw joints. Moreover, plate fractures are caused by material fatigue due to plate bending occurring under surgery. The purpose of this paper is to compare the plate designs according to the maximum stresses arising under the action of masticatory loads and to check the fixation reliability with the subsequent plate development of a reduced bone-plate contact area. Ansys Workbench software package, namely the Transient Structural module, is used for calculations based on the finite element method to study the stress-strain state of the lower jaw after titanium osteosynthesis. Plates' designs for osteosynthesis metal are developed considering the strength of the masticatory muscles. The maximum stresses in the plates have been determined, which are 481 MPa for a straight plate, 487 MPa for a y-shaped plate, and 301 MPa for a square plate. Following the mentioned, these stresses do not exceed the yield strength of titanium grade ВТ1, the smallest of them occurring in a square-shaped plate. The maximum gap has been also determined, between fragments it is 0.75 mm for a straight plate, 0.15 mm for a y-shaped plate, and 0.13 mm for a square plate. Therefore, the square plate provides the most reliable fixation of jaw fragments.
Keywords: Angular fracture, mandible, masticatory muscle forces, stress-strain state, titanium plates, metal osteosynthesis, Ansys Workbench, Transient Structural module, finite element method, computational mesh.
Received: January 2, 2022; Revised: January 20, 2022; Accepted: January 23, 2022; Published: September 15, 2022 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Rochford. E.. Richards. R.. & Moriarty. T. (2012). Influence of material on the development of device-associated infections. Clinical Microbiology And Infection. 18 (12). 1162-1167. http://dx.doi.org/10.1111/j.1469-0691.2012.04002.x.
Go to original source...
- Luhr. H. (2000). The development of modern osteosynthesis. Mund Kiefer Gesichtschir. 4(1). 84-90. http://dx.doi.org/10.1007/PL00022964.
Go to original source...
- Neumann. A.. & Kevenhoerster. K. (2009). Biomaterials for craniofacial reconstruction. GMS Current Topics in Otorhinolaryngology. Head and Neck Surgery. 8. Doc08. http://dx.doi.org/10.3205/cto000060.
Go to original source...
- Acero. J.. Calderon. J.. Salmeron. J.. Verdaguer. J.. Concejo. C.. & Somacarrera. M. (1999). The behaviour of titanium as a biomaterial: microscopy study of plates and surrounding tissues in facial osteosynthesis. Journal Of Cranio-Maxillofacial Surgery. 27(2). 117-123. http://dx.doi.org/10.1016/s1010-5182(99)80025-0.
Go to original source...
- Sukegawa. S.. Kanno. T.. Katase. N.. Shibata. A.. Takahashi. Y.. & Furuki. Y. (2016). Clinical Evaluation of an Unsintered Hydroxyapatite/Poly-L-Lactide Osteoconductive Composite Device for the Internal Fixation of Maxillofacial Fractures. Journal of Craniofacial Surgery. 27 (6). 1391-1397. http://dx.doi.org/10.1097/scs.0000000000002828 (in English).
Go to original source...
- Park. Y. (2015). Bioabsorbable osteoxation for orthognathic surgery. Maxillofacial Plastic and Reconstructive Surgery. 37(1). 1-6. http://dx.doi.org/10.1186/s40902-015-0003-7.
Go to original source...
- Theologie-Lygidakis. N.. Iatrou. I.. Eliades. G.. & Papanikolaou. S. (2007). A retrieval study on morphological and chemical changes of titanium osteosynthesis plates and adjacent tissues. Journal of Cranio-Maxillofacial Surgery. 35 (3). 168-176. http://dx.doi.org/10.1016/j.jcms.2007.01.004.
Go to original source...
- Park. H.. Kim. S.. Oh. J.. You. J.. & Kim. W. (2016). Mini-plate removal in maxillofacial trauma patients during a ve-year retrospective study. Journal Of The Korean Association of Oral and Maxillofacial Surgeons. 42(4). 182-186. http://dx.doi.org/10.5125/jkaoms.2016.42.4.182.
Go to original source...
- van Bakelen. N.. Vermeulen. K.. Buijs. G.. Jansma. J.. de Visscher. J.. & Hoppenreijs. T. et al. (2015). Cost-Effectiveness of a Biodegradable Compared to a Titanium Fixation System in Maxillofacial Surgery: A Multicenter Randomized Controlled Trial. PLOS ONE. 10 (7). e0130330. http://dx.doi.org/10.1371/journal.pone.0130330.
Go to original source...
- Markwardt. J.. Pfeifer. G.. Eckelt. U.. & Reitemeier. B. (2007). Analysis of Complications after Reconstruction of Bone Defects Involving Complete Mandibular Resection Using Finite Element Modelling. Oncology Research And Treatment. 30 (3). 121-126. http://dx.doi.org/10.1159/000098848.
Go to original source...
- Chujko. A.. Kalinovskij. D.. Pogranichnaja. K. (2011). (Computed tomography and biomechanical support in maxillofacial surgery) Komp'juternaja tomographija i biomehanicheskoe soprovozhdenie v cheljustno-licevoj hirurgii. Ortoped travmatol. 3. 29-41 (in Russian).
Go to original source...
- Material characteristics BT1-1 [web site] // Steel And Alloy Handbook. - 2018. - http://www.splav-kharkov.com/mat_start.php?name_id=1284 (in Russian).
- Gregolin. R.. Zavaglia. C.. Tokimatsu. R.. & Pereira. J. (2017). Biomechanical Stress and Strain Analysis of Mandibular Human Region from Computed Tomography to Custom Implant Development. Advances In Materials Science And Engineering. 1-9. http://dx.doi.org/10.1155/2017/7525897.
Go to original source...
- Chujko. A.. Levandovs'kyj. R.. Ugryn. M.. & Bjelikov. O. (2013). (Features of the implants selection using MIMICS-ANSYS) Osoblyvosti pidboru implantativ z vykorystannjam kompleksu MIMICS-ANSYS. Novyny stomatologii'. 1. 50-55 http://nbuv.gov.ua/UJRN/Ns_2013_1_12 (in Ukrainian).
- (Sliding friction coefficients for different materials on steel) Koefitcienty treniia skolzheniia razlichnykh materialov po stali. - tablitcy Tehtab.ru. (2018). [web site] Tehtab.ru. Retrieved 4 March 2018. from http://tehtab.ru/Guide/GuidePhysics/Frication/SteelSlidingK/ (in Russian)
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.