Acta Mechanica Slovaca 2021, 25(4):38-48 | DOI: 10.21496/ams.2022.004

Propane Gas Thermoelectric Generator with Microcontroller Integrated Development Environment Hot Side Temperature Control

Francis Onoroh1, *, Adeyinka Abdulquadri Oluwo2, Larry Orobome Agberegha ORCID...3
1 Full Affiliation, Department of Mechanical Engineering, University of Lagos, Akoka, Yaba, Lagos, Nigeria
2 Full Affiliation, Department of Mechanical Engineering, University of Lagos, Akoka, Yaba, Lagos, Nigeria
3 Full Affiliation, Department of Mechanical Engineering, Federal University of Petroleum Resources Effurun, Delta state, Nigeria

A thermoelectric generator consists of various thermocouples arranged in series. A voltage is generated when a temperature gradient exists across the junctions of the thermocouples. This research modelled, developed and tested a thermoelectric generator with hot side temperature control using propane gas, in a microcontroller integrated development environment to protect the modules from excessive high temperatures. The models were solved using MATLAB for pictorial representation of the performance of the generator with temperature gradient, hot and cold side temperatures. The thermoelectric generator was developed using ten SP-184827145-SA modules. The temperature control circuitry consists of an ATMEGA32 microcontroller, DS18B30 temperature sensors, stepper motor, computer interface and power supply unit whose sole aim is to regulate the gas supply and hence control the flame temperature. The maximum open circuit voltage gotten was 25 V at 300 secs with hot side temperature of 120°C and cold side temperature 30°C, with an efficiency of 3.6%. It was also found out that the higher the temperature gradient the higher the voltage produced.

Keywords: Temperature gradient; Thermocouple; Flame temperature; ATMEGA32 microcontroller; Voltage.

Received: October 26, 2021; Revised: November 20, 2021; Accepted: November 24, 2021; Published: December 16, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Onoroh, F., Abdulquadri Oluwo, A., & Agberegha, L.O. (2021). Propane Gas Thermoelectric Generator with Microcontroller Integrated Development Environment Hot Side Temperature Control. Acta Mechanica Slovaca25(4), 38-48. doi: 10.21496/ams.2022.004
Download citation

References

  1. Ismail B. I., Ahmed W. H. (2009). Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Patents on Electrical and Electronic Engineering (Formerly Recent Patents on Electrical Engineering), 2(1), pp. 27-39. Go to original source...
  2. Wu Y., Ming T., Li X., Pan T., Peng K., Luo X. (2014). Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator. Energy conversion and management, 88, pp. 915-927. Go to original source...
  3. Singh T., Marsh R., Min G. (2016). Development and investigation of a non-catalytic self-aspirating meso-scale premixed burner integrated thermoelectric power generator. Energy Conversion and Management, 117, pp. 431-441. Go to original source...
  4. Kim K. J. (2010). Thermal and power generating performances of thermoelectric energy recovery modules. 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 1-7. Go to original source...
  5. Shah P., Babu D., Deshpande V. (2015). Analysis of Power generation through thermoelectric generators. International Journal of latest trends in engineering and technology, 6( 2), pp. 110-118.
  6. Rohit G., Manaswini D., Kotebavi V., Nagaraja S. (2017). Performance study of thermo-electric generator. AIP Conference Proceedings 1859, 020094. Go to original source...
  7. Ming T., Wang Q., Peng K., Cai Z., Yang,W., Wu Y., Gong T. (2015). The influence of non-uniform high heat flux on thermal stress of thermoelectric power generator. Energies, 8(11), pp. 12584-12602. Go to original source...
  8. Ahiska R., Dișlitaș, S. (2006). Microcontroller based thermoelectric generator application. Gazi University urnal of Science, 19(2), pp. 135-141.
  9. Nuwayhid R. Y., Shihadeh, A., Ghaddar N. (2005). Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Conversion and Management, 46(9-10), pp. 1631-1643. Go to original source...
  10. Chasmar R. P., Stratton R. (1959). The thermoelectric figure of merit and its relation to thermoelectric generators. International journal of electronics, 7(1), pp. 52-72. Go to original source...
  11. Mishra A. K., Singh A. K, Prakash A., Ambekar R. S. (2017). Thermoelectric Generator. International Research Journal of Engineering and Technology (IRJET), 4(6), pp. 854-856.
  12. Elghool A., Basrawi F., Ibrahim T. K., Habib K., Ibrahim H., IdrisD. M. N. D. (2017). A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance. Energy conversion and management, 134, pp. 260-277. Go to original source...
  13. Lee J., Kim S., Marconnet A., Zandt M. A. A.in't., Asheghi M., Wong H. S. P., Goodson K. E. (2012). Thermoelectric characterization and power generation using a silicon-on-insulator substrate. Journal of Microelectromechanical Systems, 21(1), pp. 4-6. Go to original source...
  14. AravindKaruppaiah C., Ganesh. S., Dileepan T., Jayabharathi S. (2014). Fabrication and Analysis of Thermoelectric Generator for Power Generator. International Journal of Innovative Research in Science, Engineering and Technology, 3(1), pp. 1508-1513.
  15. Jfri F., Tawil S. N. M., Syaripuddin M., Mohamad T. N. T., Miskon A. (2015). Employment of waste heat for thermoelectric-based energy harvesting. ARPN Journal of Engineering and Applied Sciences, 10(20), pp. 9896-9901.
  16. Lay-Ekuakille A., Vendramin G., Trotta A., Mazzotta G., (2009). Thermoelectric generator design based on power from body heat for biomedical autonomous devices, IEEE International Workshop on Medical Measurements and Applications, Cetraro, Italy. Go to original source...
  17. Stecanella P. A. J., Faria M. A. A., Domingues E. G., Gomes P. H. G., Calixto W. P., Alves A. J. (2015). Electricity generation using thermoelectric generator-TEG. IEEE 15th International Conference on Environment and Electrical Engineering, pp. 2104- 2108). Go to original source...
  18. Rowe D. M. (1978). Thermoelectric power generation. Proceedings of the Institution of Electrical Engineers, Vol. 125, No. 11R, pp. 1113-1136. Go to original source...
  19. MetghalchI M., Keck J. C. (1982). Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature. Combustion and Flame, 48, pp. 191-210. Go to original source...
  20. Lee H. (2010). Thermal Designs: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers and Solar cells. John Wiley and Sons. Inc., pp.105-113. Go to original source...
  21. Morar, A. (2003). Stepper Motor Model for Dynamic Simulation. Acta Electrotehnica, 44(2), pp. 117-122.
  22. Elzalik M., Rezk H., Mostafa R., Thomas J., Shehata E. G. (2019). "An Experimental Investigation On Electrical Performance and Characterization of Thermoelectric Generators". International Journal of Energy Research. DOI: 10.1002/er.4873, pp 1-16. Go to original source...
  23. Niu X., Yu J., Wang S. (2009). Experimental Study on Low Temperature Waste Heat Thermoelectric Generator. Journal of Power Sources, 188, pp. 621-626. Go to original source...
  24. Rowe D. M., Min G. (1998). Evaluation of thermoelectric modules for power generation. Journal of power sources, 73(2), pp. 193-198. Go to original source...
  25. Ebaid M. S., Al-Khishali K. J. (2016). Measurement of the Laminar Burning Velocity for Propane: Air mixtures. Advances inMechanical Engineering, 8(6), pp. 1-17. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.