Acta Mechanica Slovaca 2021, 25(2):36-45 | DOI: 10.21496/ams.2021.023

A Comprehensive Approach to the Evaluation of Material Properties of S235JR Steel

Adam Kaľavský1, *, Peter Palička1, Róbert Huňady1, Michal Kicko1
1 Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 04200 Košice; Slovakia

The paper deals with the determination of mechanical and fatigue properties of S235JR steel, which is widely used in the engineering industry and also in other industries. The paper provides a brief overview of measurement procedures and basic mathematical formulations based on the standards ČSN EN ISO 6892-1 and ČSN 42 0368. The aim of the article is to provide a comprehensive view of the evaluation of material properties using not only conventional but also modern optical methods of mechanics, such as 3D digital image correlation or laser Doppler vibrometry. The output of the performed tests are material constants, mechanical properties in tension/pressure and fatigue characteristics under bending stress. The paper also presents the technique of estimating the Young's modulus of elasticity that is based on the experimental modal analysis. All results were obtained on a series of specimens made from an identical piece of material, making them ideal for defining a material card for different databases or FEM software.

Keywords: Young's modulus, Poisson's ratio, Proof Strength, S-N curve, tensile test, fatigue test, digital image correlation

Received: May 26, 2021; Revised: May 26, 2021; Accepted: May 27, 2021; Published: June 25, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kaľavský, A., Palička, P., Huňady, R., & Kicko, M. (2021). A Comprehensive Approach to the Evaluation of Material Properties of S235JR Steel. Acta Mechanica Slovaca25(2), 36-45. doi: 10.21496/ams.2021.023
Download citation

References

  1. Yalcin D (2017) How do different specimen geometries affect tensile test results?
  2. Standard ČSN EN ISO 6892-1: "Metallic materials - Tensiletesting - Part 1: Method of test at room temperature"
  3. Kaľavský A, Huňady R, Hagara M, Palička P (2021) Determination of fatigue material curve at fully reverse cycle without mean stress for aluminium alloy ENAW 5754 - H12. Novus Scientia 28:1-4
  4. Albert WAJ (1838) Über Treibseile am Harz. Archiv für Mineralogie, Geognosie, Bergbau und Hüttenkunde 10:215-234
  5. Schütz W (1996) A history of fatigue. Engineering Fracture Mechanics 54:263-300. https://doi.org/10.1016/0013-7944(95)00178-6 Go to original source...
  6. Basquin OH (1910) The exponential law of endurance test. Proceedings of the American Society for Testing and Materials 10:625-630
  7. Standard ČSN 42 0368: "Metal testing. Metal fatigue tests. Statistical evaluation of metal fatigue test results"
  8. Trebuňa F, Pástor M, Huňady R, Frankovský P, Hagara M (2017) Optické metódy v mechanike, TUKE, Košice
  9. Trebuňa F, Hagara M, Schrőtter M (2013) The use of optical methods by investigation of various solid mechanics problems. Transfer inovácií 25:58-62
  10. S235JR Steel Grade, Mechanical Properties, Chemical Composition, Grade Equivalent. http://www.b2bmetal.eu/en/pages/index/index/id/141/. Accessed 23 Jan 2021
  11. Universal testing machine Inspekt table 5 kN. https://www.hegewald-peschke.com/products/industry-and-material/product-detail/universal-testing-machine-inspekt-table-5-kn.html. Accessed 23 Jan 2021
  12. Palička P, Kaľavský A, Huňady R, et al (2021) Determination of material properties of aluminium alloy using 3D digital image correlation. Novus Scientia 28:1-5
  13. Trebuňa F, Šimčák F (2004) Odolnosť prvkov mechanických sústav. TUKE, Košice
  14. Bayoumi MR, Abdellatif AK (1995) Effect of surface finish on fatigue strength. Engineering Fracture Mechanics 51:861-870. https://doi.org/10.1016/0013-7944(94)00297-U Go to original source...
  15. Klotz T, Lévesque M, Brochu M (2019) Effects of rolled edges on the fatigue life of shot peened Inconel 718. Journal ofMaterials Processing Technology 263:276-284. https://doi.org/10.1016/j.jmatprotec.2018.08.019 Go to original source...
  16. Kaľavský A, Huňady R, Lengvarsky P (2020) Spectral fatigue life for simple notched component. Manufacturing Technology 20:612-616. https://doi.org/10.21062/mft.2020.073 Go to original source...
  17. Papuga J, Kaľavský A, Lutovinov M, et al (2021) Evaluation of data sets usable for validating multiaxial fatigue strength criteria. International Journal of Fatigue 145:1-15. https://doi.org/10.1016/j.ijfatigue.2020.106093 Go to original source...
  18. Kepka M., Kepka M. Jr. (2018) Using design s-n curves and design stress spectra for probabilistic fatigue life assessment of vehicle components. International Conference Integrity-Reliability-Failure. Lisabon. 373- 384.
  19. Tomaszewski T., Strzekecki P. (2016) Study of the Size Effect for Non-Alloy Steels S235JR, S355J2+C and Acid-Resistant Steel 1.4301. AIP Conference Proceedings 1780:1-8. doi: 10.1063/1.4965940. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.