Acta Mechanica Slovaca 2019, 23(4):30-36 | DOI: 10.21496/ams.2020.004

The Impact of Prestressed die Construction with Cemented Carbide Insert on Stress Distribution During Extrusion

Stanisław Kut1, Irena Nowotyńska2
1 Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Department of Materials Forming and Processing, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
2 Rzeszow University of Technology, The Faculty of Management, Department of Computer Engineering in Management, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland

An important parameter for optimizing tool life is the introduction of a pre-compression stress in the die insert through the use of the compression ring. The tests were carried out for a die with a cemented carbide insert. Three die construction solutions were used in the tests. They differ by the ratio of the wall thickness of the die insert to the wall thickness of the compression ring gm/gp = (0.57; 1; 1.75) while maintaining a constant tool diameter. All construction solutions using cemented carbide insert were analysed for three values of mounting interference amounting to d = (0.004; 0.008; 0.016) mm. On the basis of the results obtained, the degree of impact of the parameters examined (the interference value d and the ratio gm/gp) on the distribution and level of circumferential stress in a die compressed by a single ring using a cemented carbide insert were determined. It was shown that the size of the interference and the quotient (gm/gp) had the great impact on the reduction of working stresses in the die insert.

Keywords: extrusion; die compressed; cemented carbide insert; stress distribution

Published: December 20, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kut, S., & Nowotyńska, I. (2019). The Impact of Prestressed die Construction with Cemented Carbide Insert on Stress Distribution During Extrusion. Acta Mechanica Slovaca23(4), 30-36. doi: 10.21496/ams.2020.004
Download citation

References

  1. Groenbaek J., Lund E. (2008) Tool Optimization by Means of Effective Prestressing System. Conference Asia Forge, New Delhi, India.
  2. Saroosh M. A., Lee H. C., Im Y.T., Choi S.W., Lee D.L. (2007) High cycle fatigue life prediction of cold forging toolsbased on workpiece material property. Journal of Material Processing Technology 191, 178. Go to original source...
  3. Lee H.C., Saroosh M. A, Song J.H., Im Y.T. (2009) The effect of shrink fitting ratios on tool life in bolt forming processes. Journal of Material Processing Technology 209, 3766. Go to original source...
  4. Yurtdad U., Ince C., Kilicaslan H. Yildiz (2017) A case study for improving tool life in cold forging: carbon fiber composite reinforced dies. Journal of Research on Engineering Structures and Materials 3-1, 65.
  5. Kawahara J., Matsumoto R., Mori S., Osakada K. (2011) Predicting fatigue life of carbide tool using elastic-plastic FEM, Proceedings of the 44th International Cold Forging Group Plenary Meeting, 55.
  6. Wang Ch., Kam H., Wang X. (2018) Determination of shrink fitting ratio to improve fatigue life of 2-layer compound forging die by considering elasto-plastic deformation of outer ring. Procedia Manufacturing 15, 481. Go to original source...
  7. Joun M.S., Lee M.C., Park J.M. (2002) Finite element analysis of prestressed die set in cold forging. International. Journal of Machine Tools & Manufacture 42, 1213. Go to original source...
  8. Zimpel J. (1996) Obliczanie matryc wzmacnianych jednym pierścieniem. Obróbka Plastyczna Metali 2, 43.
  9. Yeo H. T., Choi Y., Hur K. D. (2001) Analysis and Design of the Prestressed Cold Extrusion Die. International. Journal Advanced Manufacturing Technology 18, 54. Go to original source...
  10. Hur K. D., Choi Y., Yeo H-T. (200) Design for stiffness reinforcement in backward extrusion die. Journal of Materials Processing Technology 130-131, 411.
  11. Hur K. D., Choi Y., Yeo H.T. (2003) A design method for cold backward extrusion using FE analysis Finite Elements in Analysis and Design 40 (2), 173. Go to original source...
  12. Frater J. L. (1989) Application of Finite Element Methods to the Design of Prestressed Tooling, Journal Mater. Shaping Technology 7, 49. Go to original source...
  13. Lange K. (1985) On the stress distribution in prestressed extrusion dies under non-uniform distribution of internal pressure. International Journal of Mechanical Sciences 27 (3), 169. Go to original source...
  14. Gronostajski Z, Hawryluk M., Jaśkiewicz K., Niechajowicz A., Polak S., Walczak S., Woźniak A. (2007) Wpływ tolerancji wykonawczych matryc sprężanych do wyciskania na ich wytężenie. Plasticita materialov 14, 87.
  15. Cwajna J., Roskosz S. (2001) Effect of microstructure on properties of sintered carbides Materials Characterization 46, 197. Go to original source...
  16. Pater Z. (2003) Ołów jako materiał modelowy do symulacji procesów obróbki plastycznej na gorąco Obróbka Plastyczna Metali 4, 41.
  17. Kut S., Nowotyńska I. (2011) Comparative numerical analysis of die wear during extrusion process of metals with differentproperties. Hutnik - Wiadomości Hutnicze 11, 925.
  18. https://www.engineeringtoolbox.comMSC Software: (2014) MSC. Marc Volume B: Element Library.[20] Zimpel J. (2002) Obliczanie matryc wstępnie sprężonych dwoma pierścieniami. Obróbka Plastyczna Metali 3, 41.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.