Acta Mechanica Slovaca 2019, 23(2):56-61 | DOI: 10.21496/ams.2019.007

High-temperature Processing and Recovery of Decommissioned Electrochemical Cells and Batteries

Mária Čarnogurská1, Miroslav Příhoda2, Peter Kurilla1
1 Technical University, Faculty of Mechanical Engineering, Department of Power Engineering, Vysokoškolská 4, 042 00 Košice, Slovakia
2 VŠB-TU Ostrava, Faculty of Materials Science and Technology, 17. listopadu 15, Ostrava, Czech Republic

The present article describes the processing and recovery of decommissioned electrochemical cells and batteries by means of high-temperature melting in a reducing atmosphere. The experiment was carried out using two samples weighing 15 and 20 kg. CaO was used as a slag-forming additive and carbon was used as a reducing agent. The results of the experiments carried out with an 80 kVA plasma reactor showed that the decommissioned electrochemical cells and batteries may be disposed of using the plasma melting technology and the resulting product may be further recovered. The recovery rate for the non-ferrous metal of interest (cobalt) is approximately 95 %. The article also presents the chemical analyses of the formed alloy about weight of 3.7 kg in first and 5.6 kg in second experiment. The vitrified slag and fly ash analysis was also performed. The volume production of syngas was 12 m3∙h-1 with LHV from 2.7 to 3.4 MJ∙m-3.

Keywords: electrochemical cells, electrochemical batteries, high-temperature melting

Published: June 28, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Čarnogurská, M., Příhoda, M., & Kurilla, P. (2019). High-temperature Processing and Recovery of Decommissioned Electrochemical Cells and Batteries. Acta Mechanica Slovaca23(2), 56-61. doi: 10.21496/ams.2019.007
Download citation

References

  1. HILTI Li-ion Batteries BU Measuring, wording 2.13, 8.8.2017, https://www.hilti.sk/medias/sys_ master/documents/hc1/9239705714718/LI-ION-BATTERIES-lt-100Wh-BU-M-SK-IBD-WWI-00000000000004314776-000.pdf, 2018.
  2. Čarnogurská M., Lázár M., Kurilla P., Brestovič T., Jasminská N., Lukáč P., Dobáková R. (2018). Vysokoteplotné spracovanie a zhodnocovanie vyradených elektrochemických článkov [High-temperature processing and recovery of rejected electrochemical cells and batteries], WASTE FORUM, 2, 255.
  3. Lázár M., Lengyelová M., Imriš I. (2014) Vitrification of fly ash from incineration of municipal waste in a plasma reactor, Chem. listy 108, 543.
  4. Čarnogurská M., Lázár M., Puškár M., Lázárová M., Širillová Ľ., Václav J. (2015). Measurement and evaluation of properties of MSW fly ash treated by plasma, Measurement 62, 7. Go to original source...
  5. Lázár M., Imriš I., Lázárová M., Horbaj P. (2015). Pyrometallurgical processing of electronic waste by plasma technology, Chem. listy 109, 543.
  6. Lázár M., Čarnogurská M., Brestovič T., Jasminská N., Bednárová Ľ., Kmeťová Ľ., Jezný T. (2016). High-Temperature Processing of Asbestos-Cement Roofing Material in a Plasma Reactor, Pol. J. Environ. Stud. 25, 2027. Go to original source...
  7. Honus S., Kumagai S., Fedorko G., Molnár V., Yoshioka T. (2018). Pyrolysis gases produced from individual and mixed PE, PP, PS, PVC, and PET-Part I: Production and physical properties, Fuel 221, 349. Go to original source...
  8. Krzyżyńska R., Hutson N. D., Zhao Y., Szeliga Z., Regucki P. (2018). Mercury removal and its fate in oxidant enhanced wet flue gas desulphurization slurry, Fuel 211, 876. Go to original source...
  9. Sevrjukov N. N., Kuzmin B. A., Čeliščev J. V. (1958), Obecné hutnictví [General metallurgy]. SNTL Praha.
  10. Kurilla, P. (2012). Dissertation work. TUKE, Košice.
  11. Vlček J., Velička M., Klárová M., Burda J., Ovčačíková H., Topinková M., Jančar D. (2018). Development of parameters of slags from ladle metallurgy during their primary treatment, WASTE FORUM 11, 359.
  12. Larcher D., Tarascon J.-M. (2015). Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (1), 19. Go to original source...
  13. Ding Y., Cano Z. P., Yu A., Lu J., Chen Z. (2019). Automotive Li-Ion Batteries: current status and future perspectives, Electrochem. Energy Rev. 2, 1. Go to original source...
  14. Wang X., Gaustad G., et. al. (2014). Economic and environmental characterization of evolving Li-ion battery waste stream, J. Environ. Manage. 135, 126. Go to original source...
  15. Arbabzadeh M., Lewis M. G., Keoleian A. G. (2019). Green principles for responsible battery management in mobile applications, J. Energy Stor. 24, 100779. Go to original source...
  16. Kunhalmi, G. (1990). Hutnictvo ľahkých kovov. ES VŠT v Košiciach.
  17. Chang-Heum J., Seung-Taek Myung. (2019). Efficient recycling of valuable resources from discarded lithium-ion batteries, J. Power Sources 426,259. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.