Acta Mechanica Slovaca 2018, 22(2):24-29 | DOI: 10.21496/ams.2018.013

Heat Pump Application at Hydrogen Compression While using Metal Hydride Materials

Tomáš Brestovič1, Natália Jasminská1, Marián Lázár1
1 Technical University of Košice, Faculty of Mechanical Engineering, Department of Power Engineering, Slovak Republic

This paper discusses about the possibility of using a heat pump when compressing hydrogen with metal hydride materials. Hydrogen is absorbed into the alloy at low pressure and temperature. Increasing the temperature of the alloy by absorbed hydrogen results in a significant increase in pressure, with hydrogen desorption being carried out at an increased equilibrium pressure. A compressor working with MH materials requires cyclic heating of the reservoir from which hydrogen will be desorbed and absorbed.

Keywords: hydrogen; compression; heat pump; metal hydride.

Published: June 15, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Brestovič, T., Jasminská, N., & Lázár, M. (2018). Heat Pump Application at Hydrogen Compression While using Metal Hydride Materials. Acta Mechanica Slovaca22(2), 24-29. doi: 10.21496/ams.2018.013
Download citation

References

  1. Mellouli, S., Askrifi, F., Dhaou, H., Jemni, A., Ben Nasrallah, S. (2006). A study of the thermal behavior of a deformable metal-hydride bed. International journal of hydrogen energy, p. 1711-1724. Go to original source...
  2. Cao, Z., Ouzang, L., Wang, H., Liu, J., Sun, D., Zhang, Q., Zhu, M. (2014). Advanced high-pressure metal hydride fabricated via TieCreMn alloys for hybrid tank. International journal of hydrogen energy, p. 2717 - 2728. Go to original source...
  3. Sarkar, A., Benerjee, R. (2005). Net energy analysis of hydrogen storage option. International journal of hydrogen energy, p. 867-877. Go to original source...
  4. Bouaricha, S., Huot. J., Guaz, D., Schuly, R. (2002). Reactivity during cycling of nanocrystalline Mg-based hydrogen storage compounds. Int J Hydrogen Energy; 27(9): 909-13. Go to original source...
  5. Grochala, W., Edwards, P.P. (2004). Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev; 104:1283-315. Go to original source...
  6. Imamura, H., Masanari, K., Kusuhara, M., Katsumoto, H., Sumi, T., Sakata, Y. (2005). High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling. J Alloys Compds; 386:211-6. Go to original source...
  7. Popeneciu, G., Almasan, V., Coldea, I., Lupu, D., Misan, I., Ardelean, O. (2009). Investigation on a tree-stage hydrogen thermal compressor based on metal hydrides. Journal of Physics: Conference Series 182, 012053. Go to original source...
  8. Lototskyy, M. V., Yartzs, V. A., Pollet, B. G., Boweman, Jr, R. C. (2014). Metal hydride hydrogen compressors: A review. International journal of hydrogen energy, p. 5818 - 5851. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.