Acta Mechanica Slovaca 2018, 22(2):6-15 | DOI: 10.21496/ams.2018.011

Ultrasonic Quasi-Rayleigh Waves - Propagation Properties and Detection of Mechanical Damage

Michal Hlavatý1, Miloš Musil1, Branislav Hučko1
1 Institute of Applied Mechanics and Mechatronics, Faculty of Mechanical Engineering, Slovak University of Technology, Námestie slobody 17, 812 31 Bratislava, Slovakia

This article examines the propagation of quasi-Rayleigh waves and their trial application to detect defects in plate structures. With their specific propagation properties, quasi-Rayleigh waves have the potential to extend the scope of conventional ultrasound defect detection methods. This would enable detection across longer distances and with higher sensitivity, with earlier identification of surface defects in plate structures as a result. The article contains a basic description of quasi-Rayleigh waves, together with their propagation properties, with respect to a particular isotropic material (steel). The propagation of quasi-Rayleigh waves is then demonstrated using a smooth plate and a plate featuring a unilateral obstacle. The behaviours of propagating waves are determined using three approaches: analytical, numeric and experimental. The last part of the article provides a diagram and a description of the experimental measurement assembly and a case of detecting a surface defect in a plate structural part.

Keywords: ultrasonic; quasi-Rayleigh waves; dispersion; steel plate; surface defect.

Published: June 15, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hlavatý, M., Musil, M., & Hučko, B. (2018). Ultrasonic Quasi-Rayleigh Waves - Propagation Properties and Detection of Mechanical Damage. Acta Mechanica Slovaca22(2), 6-15. doi: 10.21496/ams.2018.011
Download citation

References

  1. Harri, K., Guillaume, P., Vanlanduit, S. (2006). On-line monitoring of cracks using ultrasonic multisine surface waves, 9th European Conference on Non-destructive testing, Berlin, ISBN 3-931381-86-2
  2. Terrien, N., et. al. (2007). A combined finite element and modal decomposition method to study the interaction of Lamb modes with micro-defect, Ultrasonic 46 (2007), p.74-88, ISSN 0041-624X Go to original source...
  3. Krššák, P. (2008). Detekcia porúch v kmitajúcich mechanických sústavách, Dizertačná práca, Strojnícka fakulta STU v Bratislave, 2008, SjF-10940-10281
  4. Viktorov, I. A. (1967): Rayleigh and Lamb waves: Physical theory and applications, Plenum Press, New York, ISBN 978-1-4899-5683-5 Go to original source...
  5. Masserey, B., Fromme, P. (2008). On the reflection of coupled Rayleigh-like waves at surface defects in plates, J. Acoust. Soc. Am 123 (1), January 2008, p. 88-98, ISSN 1520-8524 Go to original source...
  6. Masserey, B., Fromme, P. (2009). Surface defect detection in stiffened plate structures using Rayleigh-like waves, NDT&E International 42 (2009), p. 564-572, ISSN 0963-8695 Go to original source...
  7. Hlavatý, M. (2017). Ultrazvuková detekcia poškodenia mechanických systémov, Dizertačná práca, Strojnícka fakulta STU v Bratislave, 2017, SjF-10941-26820
  8. Crawford, F. S. (1968). Waves Berkeley physics course, McGraw-Hill, Vol.3, New York
  9. Hlavatý, M., Starek, L., Musil, M., Hučko, B. (2017). Ultrasonic defect detection of structural plates using quasi-Rayleigh waves, Journal of mechanical engineering = Strojnícky časopis, Vol. 67 (2017), No. 2, p.37-50, ISSN 2450-5471 Go to original source...
  10. Musil, M. (2006). Localization and quantification of breathing crack. In: Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, Vol. 128, No. 2 (2006), p. 458-462, ISSN 0022-0434 Go to original source...
  11. Écsi, L., Élesztős, P., Jančo, R. (2016). On the stress solution of hypoelastic material based models using objective stress rates, APLIMAT 2016 - 15th Conference on Applied Mathematics 2016, Proceedings, Bratislava, 2 - 4 February 2016, p. 280-297, ISBN: 978-802274531-4
  12. Frydrýšek, K., Jančo, R. (2016). Simple planar truss (linear, nonlinear and stochastic approach), In Strojnícky časopis = Journal of mechanical engineering, Vol. 66, No.2, 2016, p. 5 - 12, DOI: 10.1515/scjme-2016-0013 Go to original source...
  13. Chmelko, V. (2015). Vrubové účinky v prevádzke strojov a konštrukcií, Vydavateľstvo STU, ISBN: 978-80-227-4482-9
  14. Chmelko, V., Kliman, V., Garan, M. (2015). In-time monitoring of fatigue damage, In Procedia Engineering 101, Elsevier 2015, p. 93-100 Go to original source...
  15. Musil, M. (2001). Crack localization and quantification, In Strojnícky časopis = Journal of mechanical engineering, Vol. 52, No. 5-6 (2001), p. 103, ISSN 0039-2472

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.