Acta Mechanica Slovaca 2017, 21(1):6-11 | DOI: 10.21496/ams.2017.002
On Minimal Doubly Resolving Sets of Circulant Graphs
- 1 College of Computer Science & Information Systems, Jazan University, Jazan, Saudi Arabia
- 2 Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan.
Consider a simple connected undirected graph G = (VG ,EG), where VG represents the vertex set and EG represents the edge set respectively. A subset B of VG is called a resolving set if for every two distinct vertices x, y of G there is a vertex v in set B such that d(x,v) ≠ d(y,v). The resolving set of minimum cardinality is called metric basis of graph G . This minimal cardinality of metric basis is denoted by β(G), and is called metric dimension of G. A subset D of V is called doubly resolving set if for every two vertices x, y of G there are two vertices u, v ∈ D such that d(u,x) -d(u,y) ≠ d(v,x) -d(v,y). A doubly resolving set with minimum cardinality is called minimal doubly resolving set. This minimum cardinality is denoted by ψ(G).
Some partial cases for metric dimension of circulant graph Cn(1,2,3) for n ≥ 12 has been discussed in [21]. Afterwards, problem of finding metric dimension for circulant graph Cn(1,2,3), n ≥ 12 has been completely solved by Borchert et al., in [7].
In this paper, we prove that ψ (Cn (1, 2, 3)) = β (Cn (1, 2, 3)) = {4 if n ≠ 1(mod 6), 5 otherwise.
Keywords: resolving set, metric dimension, minimal doubly resolving set, circulant graph
Published: March 31, 2017 Show citation
References
- P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. 14, (1975), 549-559.
- F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin. 2, (1976), 191-195.
- Z. Beerliova, F. Eberhard, T. Erlabach, A. Hall, M. Hoffmann, M.Mihalak, L. S. Ram, Network discovery and verification, IEEE J. Sel. Area. Commun. 24, (2006), 2168-2181.
Go to original source...
- K. Liu, N. Abu-Ghazaleh, Virtual coordinate backtracking for void traversal in geographic routing, In. T. Kunz, S. S. Ravi, editors Lecture Notes on Computer Science. 4104, (2006), 46-59.
Go to original source...
- M. Cangalovic, J. Kratica, V. Kovacevic-Vujcic, M. Stojanovic, Minimal doubly resolving sets of prism graphs, Optimization, 62, (2013), 1037-1043.
Go to original source...
- S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70, (1996), 217-229.
Go to original source...
- A. Borchert, S. Gosselin, The metric dimension of circulant graphs and Cayley hypergraphs, Utilitas Math. (2014), in press.
- J. Kratica, V. Kovacevic-Vujcic, M. Cangalovic, Computing minimal doubly resolving sets of graphs, Comput. and Oper. Res. 36, (2009), 2149-2159.
Go to original source...
- J. Kratica, V. Kovacevic-Vujcic, M. Cangalovic, M. Stojanovic, Minimal doubly resolving sets and the Strong metric dimension of Hamming graphs, Appl. Anal. Discrete Math. 6, (2012), 63-71.
Go to original source...
- J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puetas, C. Seara, D. R. Wood, On the metric dimension of cartesian products of Graphs, SIAM J. Discrete Math. 21, (2007), 423-441.
Go to original source...
- I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Utilitas Math. 75, (2008), 21-33.
- I. Tomescu, M. Imran, R-sets and Metric Dimension of Necklace Graphs, Appl. Math. Inf. Sci. 9, (2015), 63-67.
Go to original source...
- M. Ali, G. Ali, A. Q. Baig, M. K. Shafiq, On the metric dimension of Möbius ladders, Ars Combin. 105, (2012), 403-410.
- M. Bača, E. T. Baskoro, A. N. M. Salman, S. W. Saputro, D. Suprijanto, The metric dimension of regular bipartite graphs, Bull. Math. Soc. Sci. Math. Roumanie 54, (2011), 15-28.
- M. Fehr, S. Gosselin, O. R. Oellermann, The metric dimension of Cayley digraphs, Discrete Math. 306, (2006), 31-41.
Go to original source...
- M. Imran, A. Q. Baig, A. Ahmad, Families of plane graphs with constant metric dimension, Utilitas Math., in pres.
- M. Imran, A. Q. Baig, M.K. Shafiq, A. Semaničová, Classes of convex polytopes with constant metric dimension, Utilitas Math., in pres.
- M. Imran, S. A. Bokhary, A. Q. Baig, On families of convex polytopes with constant metric dimension, Comput. Math. Appl. 60(9), (2010), 2629-2638.
Go to original source...
- M. Imran, A. Q. Baig, A special class of convex polytopes with constant metric dimension, J. Combin. Math. Combin. Comput. 77, (2011), 197-205.
- M. Imran, A. Q. Baig, An infinite class of polytopes with constant metric dimension, J. Combin. Math. Combin. Comput., in press.
- M. Imran, A. Q. Baig, S. A. Bokhary, I. Javed, On the metric dimension of circulant graphs, Appl. Math. Lett. 25, (2012), 320-325.
Go to original source...
- M. Imran, A. Q. Baig, S. A. Bokhary, E. T. Baskoro, New classes of convex polytopes with constant metric dimension, Utilitas Math., in press.
- H. Iswadi, E. T. Baskoro and R. Simanjuntak, On the metric dimension of corona product of graphs, Far East J. Math. Sci. 52(2), (2011), 155-170.
- M. Jannesari, B. Omoomi, The metric dimension of the lexicographic product of graphs, Discrete Math. 312(22), (2012), 3349-3356.
Go to original source...
- S. W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, E. T. Baskoro, A. N. M. Salman, M. Bača, The metric dimension of the lexicographic product of graphs, Discrete Math. 313(9), (2013), 1045-1051.
Go to original source...
- H. M. A. Siddiqui, M. Imran, Computation of metric dimension and partition dimension of Nanotubes, J. Comput. Theor. Nanosci. 12, (2015), 1-5.
Go to original source...
- C. Poisson, P. Zhang, The metric dimension of unicyclic graphs, J. Combin. Math. Combin. Comput. 40, (2002), 17-32.
- I. Tomescu, I. Javaid, On the metric dimension of Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie 50(98)(4), (2007), 371-376.
- J. C. Bermound, F. Comellas, D. F. Hsu, Distributed loop computer networks: survey, J. Parallel Distrib. Comput. 24, (1995), 2-10.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.