Acta Mechanica Slovaca 2015, 19(3):46-53 | DOI: 10.21496/ams.2015.023

Magnetocaloric Effect in the Symmetric Spin-1/2 Diamond Chain with Different Landé g - factors of the Ising and Heisenberg Spins

Lucia Gálisová*
Department of Applied Mathematics and Informatics, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic

The symmetric spin-1/2 Ising-Heisenberg diamond chain with different Landé g-factors of the Ising and Heisenberg spins is exactly solved by combining the generalized decoration-iteration transformation and transfer-matrix method. The ground state of the system and the magnetocaloric effect during the adiabatic (de)magnetization are particularly examined. It is evidenced that the considered mixed-spin diamond chain exhibits the enhanced magnetocaloric effect during the adiabatic (de)magnetization in the vicinity of field-induced phase transitions as well as in the zero-field limit when the frustrated phase constitutes the zero-field ground state. The cooling efficiency of the system depends on whether it is macroscopically degenerate in these parameter regions or not.

Keywords: Ising-Heisenberg diamond chain; magnetocaloric effect; Landé g-factor; decoration-iteration transformation; exact results

Published: October 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Gálisová, L. (2015). Magnetocaloric Effect in the Symmetric Spin-1/2 Diamond Chain with Different Landé g - factors of the Ising and Heisenberg Spins. Acta Mechanica Slovaca19(3), 46-53. doi: 10.21496/ams.2015.023
Download citation

References

  1. Mattis, D.C. (1993). The Many-body Problem. World Scientific, Singapore. Go to original source...
  2. Hida, K., Takano, K., Suzuki, H. (2009). Finite Temperature Properties of Mixed Diamond Chain with Spins 1 and 1/2. J. Phys. Soc. Jpn., 78, 084716. Go to original source...
  3. Rojas, O., de Souza, S.M., Ohanyan, V., Khurshudyan, M. (2011). Exactly solvable mixed-spin Ising-Heisenberg diamond chain with biquadratic interactions and single-ion anisotropy. Phys. Rev. B, 83, 094430. Go to original source...
  4. Čanová, L., Strečka, J., Lučivjanský, T. (2009). Exact solution of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chain. Condens. Matter Phys., 12, 353. Go to original source...
  5. Ananikian, N., Strečka, J., Hovhannisyan, V. (2014). Magnetization plateaus of an exactly solvable spin-1 Ising-Heisenberg diamond chain. Solid State Commun., 194, 48. Go to original source...
  6. Gálisová, L. (2013). Magnetic properties of the spin-1/2 Ising-Heisenberg diamond chain with the four-spin interaction. Phys. Stat. Solidi B, 250, 187. Go to original source...
  7. Lisnyi, B., Strečka, J. (2014). Exact results for a generalized spin-1/2 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins. Phys. Stat. Solidi B, 251, 1083. Go to original source...
  8. Gálisová, L. (2014). Magnetocaloric effect in the spin-1/2 Ising-Heisenberg diamond chain with the four-spin interaction. Condens. Matter Phys., 17, 13001. Go to original source...
  9. Abgaryan, V.S, Ananikian, N.S., Ananikyan, L.N., Hovhannisyan, V. (2015). Entanglement, magnetic and quadrupole moments properties of the mixed spin Ising-Heisenberg diamond chain. Solid State Commun., 203, 5. Go to original source...
  10. Kikuchi, H., Fujii, Y., Chiba, M., Mitsudo, S., Idehara, T., Tonegawa, T., Okamoto, K., Sakai, T., Kuwai, T., Ohta H. (2005). Experimental Observation of the 1/3 Magnetization Plateau in the Diamond-Chain Compound Cu3(CO3)2(OH)2. Phys. Rev. Lett., 94, 227201. Go to original source...
  11. Rule, K. C., Wolter, A.U.B., Sullow, S., Tennant, D. A., Brühl, A., Köhler, S., Wolf, B., Lang, M., Schreuer, J. (2008). Nature of the Spin Dynamics and 1/3 Magnetization Plateau in Azurite. Phys. Rev. Lett., 100, 117202. Go to original source...
  12. Syozi, I. (1972). Phase Transition and Critical Phenomena. Academic Press, New York, pp. 269-329.
  13. Strečka, J. (2010). On the Theory of Generalized Algebraic Transformation. LAP LAMBERT Academic Publishing, Saarbrucken, Germany.
  14. Baxter, J. R. (1982). Exactly Solved Models in Statistical Mechanics. Academic Press, New York, pp. 32-38.
  15. Zhu, L., Garst, M., Rosh, A., Si, Q. (2003). Universally Diverging Grüneisen Parameter and the Magnetocaloric Effect Close to Quantum Critical Points. Phys. Rev. Lett., 99, 066404. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.