Acta Mechanica Slovaca 2015, 19(1):36-41 | DOI: 10.21496/ams.2015.004

Removal of Ammonium Ions from Gypsum Slurry in the Process of Desulphurisation of Flue Gases

Miroslav Příhoda1, Mária Čarnogurská2*, Roman Pavlov3
1 VŠB - Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, Ostrava - Poruba, 708 00, Czech Republic
2 Technical University of Košice, Faculty of Mechanical Engineering, Vysokoškolská 4, 042 00 Košice
3 Slovenské elektrárne, a. s., member of the group Enel, Thermal power plant Vojany, 076 72 Vojany

The article deals with the proposed methodology for the removal of ammonium ions from the gypsum slurry in the Vojany Slovakia (EVO) power plant. The suspension (slurry) is formed as a by-product of the treatment process of the flue gas desulphurization and denitrification, when ammonia water is being fed to the flue gas. Most of the ammonia, which does not participate in the chemical reaction, escapes together with the flue gas into the absorber of the desulfurization device. By washing such flue gases, large quantities of gypsum slurry are created, which contain ammonium ions. Gypsum slurry is admixed to the "stabilizer" in its production, where it comes into contact with the adhesive agent (CaO), whilst releasing ammonia. Based on the analysis of the current state of denitrification and desulphurization at EVO Vojany, a methodology, more precisely described in the article, was proposed for the removal of ammonium ions from the gypsum slurry.

Keywords: Denitrification, desulphurization, gypsum suspension (slurry), ammonium ions

Published: March 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Příhoda, M., Čarnogurská, M., & Pavlov, R. (2015). Removal of Ammonium Ions from Gypsum Slurry in the Process of Desulphurisation of Flue Gases. Acta Mechanica Slovaca19(1), 36-41. doi: 10.21496/ams.2015.004
Download citation

References

  1. Ahn, J., Kim, H. J., Choi, K. S. 2010. Oxy-fuel combustion boiler for CO2 capturing: 50 kW class model test and numerical simulation, J. Mech. Sci. Technol., 24 (10): p. 2135-2141, DOI: 10.1007/s12206-010-0711-y. Go to original source...
  2. Čarnogurská, M., Příhoda, M., Pyszko, R., Širillová, Ľ., Palkóci, J. 2014. The influence of calcite on the ash flow temperature for semi-anthracite coal from Donbas district. Chem. Process Eng. 35 (4): p. 515-525, DOI: 10.2478/cpe-2014-0038. Go to original source...
  3. Čarnogurská, M., Příhoda, M., Koško, M., Pyszko, R. 2012. Verification of pollutant creation model at dendromasa combustion. J. Mech. Sci. Technol., 26 (9): p. 4161-4169, DOI: 10.1007/s12206-011-0913-y. Go to original source...
  4. Čarnogurská, M., Příhoda, M., Brestovič, T. 2011. Modelling of nitrogen oxides formation applying dimensional analysis. Chem. Process Eng., 32 (3): p. 175-184, DOI: 0.2478/v10176-011-0013-7. Go to original source...
  5. Javorský, P., Fojtíková, D., Kašal, V. 1987. Chemické rozbory v zemědělských laboratořích. Ministerstvo zemědělství a výživy ČSR, Praha.
  6. Kočanová, S., Lukáč, L. 2014. The impact of the composition of the wood gas to emissions after combustion of wood gas. The Holistic Approach to Environment, 4 (3): p. 111-117.
  7. Moroń, W., Czajka, K., Ferens, W., Babul, K., Szydełko, A., Rybak, W. 2013. NOx and SO2 emission during OXY-coal combustion. Chem. Process Eng., 34 (3), p. 337-346. DOI: 10.2478/cpe-2013-0027. Go to original source...
  8. Pavlov, R. 2007. Odstraňovanie amónnych iónov zo sadrovcovej suspenzie v EVO Vojany v procese odsírenia. Diplomová práca. SjF TU v Košiciach.
  9. Sambor, A., Szymanek. A. 2012. Investigation of the distribution of chemical components in selected landfill layers and fly ash fractions. Chem. Process Eng., 33 (2): p. 221-229, DOI: 10.2478/v10176-012-0019-9. Go to original source...
  10. Wang, W., Luo, Z., Shi Z., Cen, K. 2011. Experiments and Modelling of Ash Mineral Evolution in Burning High-Sulphur Coal with Lime. Energy Fuels, 25(1): p. 130-135. DOI: 10.1021/ef1014346. Go to original source...
  11. Szlek, A., Jandačka, J., Nosek, R. 2010. Numerical modelling of coal combustion in domestic boiler. Archivum combustionis, 30 (3): p. 167-175.
  12. Zavila, O., Bojko, M., Kozubková, M., Danihelka, P., Baudišová, B., Maléřová, L. Čarnogurská, M. 2014. CFD Analysis of the Influence of Meteorological Conditions on Motion of Ammonia. Acta Mechanica Slovaca, (18) 1: p. 64-70. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.