Acta Mechanica Slovaca 2012, 16(2):54-60 | DOI: 10.21496/ams.2012.019
Application of Genetic Algorithm for Optimization of Neural Networks for Selected Tribological Test
- a Rzeszow University of Technology, Department of Materials Forming and Processing, ul. W. Pola 2, 35-959 Rzeszów, Poland
- b University of Stavanger, Department of Mechanical and Structural Engineering and Materials Science, 4036 Stavanger, Norway
In this work was presented the method of determination of the friction coefficient by using multilayer artificial neural networks on the basis of experimental database obtained from the strip drawing test. Using genetic algorithm the optimization of number of input variables of artificial neural networks has been done. As an input parameters for training artificial neural networks following parameters has been used: surface parameters of the sheet and dies, sheet material parameters and clamping force. Some results have pointed out that genetic algorithm has been successfully appled to optimization of training set.
Keywords: Friction, friction coefficient, genetic algorithm, artificial neural networks
Received: January 15, 2012; Accepted: July 15, 2012; Published: October 31, 2012 Show citation
References
- Darendeiler H., Akkok M., Yucesoy C.A., Effect of variable coefficient on sheet metal drawing, Tribol. Int., vol. 35, no. 2, 2002, p. 97-104.
Go to original source...
- Fratini L., Lo Casto S., Lo Valvo E., A technical note on an experimental device to measure friction coefficient in sheet metal forming, J. Mat. Proc. Technol., vol. 172, no. 1, 2006, p. 16-21.
Go to original source...
- Lee B.H., Keum Y.T., Wagoner R.H., Modeling of the friction caused by lubrication and surface roughness in sheet metal forming, J. Mat. Proc. Technol., vol. 130-131, 2002, p. 60-63.
Go to original source...
- Guo B., Gong F., Wang C., Shan D., Size effect on friction in scaled down strip drawing, J. Mater. Sci., vol. 45, no. 15, 2010, p. 4067-4072.
Go to original source...
- Pacana A., Korzyński M.: Roller burnishing parameters analyse with Taguchi method. Międzynarodowa Konferencja Naukowa "MECHANIKA 2002", Rzeszów, July 2002, s. 273 - 279, ISSN 0209-2689
- Pacana A., Noga S.: Application neural networks to find the relation between the roller burnishing parameters and the surface roughness. Computer science for design and technology 2000 (x41A;онгресса; Конструкторско - технологическая информатика 2000), Moccow, CТАНКИН, 3-6.10.2000 s.292-294 ISBN 5-7028-0117-2
- Hertz J., Krogh A., Palmer R. G., Wstęp do teorii obliczeń neuronowych, WNT, Warszawa, 1993.
- Tadeusiewicz R., Sieci neuronowe, WNT, Warszawa 1998.
- Michalewicz Z., Algorytmy genetyczne + struktury danych = programy ewolucyjne, WNT, Warszawa, 1999.
- Lula P., Tadeusiewicz R., STATISTICA Neural Networks PL, Przewodnik problemowy, Statsoft, Kraków, 2001.
- StatSoft, Inc. Manual of STATISTICA Neural Networks Software. StatSoft Inc., Tulsa, 1998.
- Stachowicz F., Trzepieciński T., ANN application for determination of frictional characteristics of brass sheet metal, Journal of Artificial Intelligence, Vol. 1, No 2, 2004, pp.81-90.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.