Acta Mechanica Slovaca 2011, 15(3):14-21 | DOI: 10.21496/ams.2011.023
Outline of FEM Simulation and Modelling of Hard Turning Process
- a Full professor at TU Košice, KTaM SjF TU, Masiarska 74 04001 Košice, Slovakia
- b Full professor at University Novi Sad, Serbia
- c Full professor at University Miskolc, Hungary
- d Associate professor at TU Košice, Slovakia
Hard machining, as attractive replacement for many rough and finish grinding operation, generates high cutting forces and temperature that enhance tool wear when act together. Therefore, the tool geometry and machining parameters have to be carefully optimized for a given material. Because of high cost and time consuming experimental work up-to-date advanced software for modeling and simulation brings quick and adequate solution. The aim of this contribution is to study the influence of cutting parameters and material hardness on accompanying phenomena when hard turning process with mixed oxide ceramic inserts. Hardened steel with different hardness level of HRC 46, HRC 55 and HRC 60, respectively, has been employed in modeling and trials. In order to better understand dynamics of cutting hardened steel, investigation has been performed making use finite element simulation in two dimension, and experimental analysis of cutting force. The potentiality of the model as well as the experimental results are compared and discussed.
Keywords: Hard Turning, Cutting Force, Temperature, Advant Edge Modelling
Received: April 5, 2011; Accepted: May 18, 2011; Published: October 31, 2011 Show citation
References
- Mackerle, J. (2003). Finite element analysis and simulation of machining: an addendum a bibliography (1996-2002). Int. J Mach Tools Manuf, vol. 43, pp. 103-114
Go to original source...
- Mackerle, J. (1999). Finite element analysis and simulation of machining: a bibliography (1976-1996). J Mater Process Technol, vol. 86, pp. 17-44
Go to original source...
- Tonshoff, H.K., Arendt, C., Ben Amor, R. (2000). Cutting of hardened steel. Annals of the CIRP, vol. 49, no.2, pp. 547-566
Go to original source...
- Arrazola, P. J., et al. (2005). Serrated chip prediction in numerical cutting models. 8th CIRP Workshop on Modeling of Machining Operations 5, pp. 115-122
- Mamalis, A.G., Kundrak, J., et al. (2003). Thermal modeling of surface grinding using implicit finite element techniques. Int. Journal of Advanced Manufacturing Technology, vol. 12, pp. 929-934
Go to original source...
- Mamalis, A.G., Kundrak, J., et al. (2007). On the finite element modeling of high speed hard turning. Int. Journal of Advanced Manufacturing Technology, vol. 16
- Guo, Y.B., Liu, C.R. (2002). 3D FEA Modelling of hard turning. ASME Journal of Manufacturing Science and Engineering, vol. 124, pp. 189-196
Go to original source...
- Ng E.-G., Aspinwall, D.K. (2002). Modeling of hard part machining. J Mater Process Technol, vol.127, pp. 222-229
Go to original source...
- Beňo, J., Maňková, I. (2004). Technological and material factors of machining. Vienala Press, Košice, (in Slovak). ISBN 80-7099-701-X, 418
- Leopold, J., Neugebauer, R. (2004). A finite element study of the effect of friction on chip- and burr- formation in orthogonal metal cutting. 7th CIRP Int. Workshop on Modeling of Machining Operations 5, pp. 125-132
- Maňková, I., Beňo, J. (2007). Introduction to FEM simulation of cutting temperature when turning of AISI 1045 steel. Production Process in Mechanical Engineering - Research Reports, Krakow, pp. 105-110
- Maňková, I., Marková, G. (2009). Comparative assessment of hard turned surfaces microgeometry by 2D and 3D parameters. Acta Mechanica Slovaca, vol.13, pp. 86-93
- Zebala, W., Slusarczyk, L. (2006). Aspect of FEM simulation of cutting process. Production Process in Mechanical Engineering - Research Reports, Krakow, pp. 69-74
- Demeč, P., Svetlík, J.: (2009) Virtual Machining and its Experiemnatl Verification. Acta Mechanica Slovaca, ISSN 1335-2393, 13, No 4: 68-73
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.