Acta Mechanica Slovaca 2010, 14(4):16-27 | DOI: 10.2478/v10147-011-0030-z

Analysis of Thermo-Piezoelectricity Problems by Meshless Method

Jan Sládek1, Vladimír Sládek2, Peter Staňák3
1 Slovak Academy of Sciences
2 Comenius University
3 Institute of Construction and Architecture, Slovak Academy of Sciences

In this paper meshless method based on the local Petrov-Galerkin approach is pesented for the solution of boundary value problems for coupled thermo-electro-mechanical fields. Transient dynamic governing equations are considered in analysis of the problems. Material properties of piezoelectric materials are influenced by a thermal field. It is leading to an induced nonhomogeneity and the governing equations are more complicated compared to a homogeneous counterpart. Two-dimensional analyzed domain is divided into small circular subdomains surrounding nodes that are randomly spread over the whole domain. A unit step function is used as the test functions in the local weak-form. The derived local integral equations (LIEs) have boundary-domain integral form. The moving least-squares (MLS) method is adopted for the approximation of the physical quantities in the LIEs and afterwards to obtain a system of ordinary differential equations (ODE) for unknown nodal quantities. To solve this system of ODE, Houbolt finite-difference scheme is applied as a time-stepping method.

Keywords: Meshless Local Petrov-Galerkin (MLPG) Method, MLS Interpolation, Piezoelectric Solids, Transient Thermal Load, Houbolt Finite-Difference Scheme, Orthotropic Properties

Published: October 31, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sládek, J., Sládek, V., & Staňák, P. (2010). Analysis of Thermo-Piezoelectricity Problems by Meshless Method. Acta Mechanica Slovaca14(4), 16-27. doi: 10.2478/v10147-011-0030-z
Download citation

References

  1. Aouadi M., Generalized thermo-piezoelectric problems with temperature-dependent properties, Int. J. Solids Structures, vol. 43, 2006, p. 6347-6358 Go to original source...
  2. Ashida F., Tauchert T.R., Noda N., Potential function method for piezothermoelastic problems of solids of crystal class 6 mm in cylindrical coordinates, Journal of Thermal Stresses, vol. 17, 1994, p. 361-375 Go to original source...
  3. Atluri S.N., The Meshless Method (MLPG) for Domain & BIE Discretizations, Tech Science Press, Forsyth, GA, USA, 2004
  4. Belytschko T., Krogauz Y., Organ D., Fleming M., Krysl P., Meshless methods; an overview and recent developments, Comp. Meth. Appl. Mech. Engn., vol. 139, 1996, p. 3-47 Go to original source...
  5. Bert C.W., Birman, V., Stress dependency of the thermoelastic and piezoelectric coefficients, AIAA Journal, vol. 37, 1999, p. 135-137 Go to original source...
  6. Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, Clarendon, Oxford, 1959
  7. Ding H., Liang J., The fundamental solutions for transversaly isotropic piezoelectricity and boundary element method, Computers & Structures, vol. 71, 1999, p. 447-455 Go to original source...
  8. Dunn M.L., Micromechanics of coupled electroelastic composites: Effective thermal expansion and pyroelectric coefficients, Journal of Applied Physics, vol. 73, 1993, p. 5131-5140 Go to original source...
  9. Enderlein M., Ricoeur A., Kuna M., Finite element techniques for dynamic crack analysis in piezoelectrics, International Journal of Fracture, vol. 134, 2005, p. 191-208 Go to original source...
  10. Garcia-Sanchez F., Zhang Ch., Sladek J., Sladek V., 2-D transient dynamic crack analysis in piezoelectric solids by BEM, Computational Materials Science, vol. 39, 2007, p. 179-186 Go to original source...
  11. Gruebner O., Kamlah M., Munz D., Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium, Eng. Fracture Mechahanics, vol. 70, 2003, p. 1399-1413 Go to original source...
  12. Houbolt J.C., A recurrence matrix solution for the dynamic response of elastic aircraft, Journal of Aeronautical Sciences, vol. 17, 1950, p. 371-376 Go to original source...
  13. Kuna M., Finite element analyses of cracks in piezoelectric structures - a survey, Archives of Applied Mechanics, vol. 76, 2006, p. 725-745 Go to original source...
  14. Lee J.S., Boundary element method for electroelastic interaction in piezoceramics, Engineering Analysis with Boundary Elements, vol. 15, 1995, p. 321-328 Go to original source...
  15. Lekhnitskii S.G., Theory of Elasticity of an Anisotropic Body, Holden Day, San Francisco, 1963
  16. Liu G.R., Dai K.Y., Lim K.M., Gu Y.T., A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures, Computational Mechanics, vol. 29, 2002, p. 510-519 Go to original source...
  17. Mindlin R.D., On the equations of motion of piezoelectric crystals, problems of continuum, In: Mechanics 70th Birthday Volume (N.I. Muskelishvili, ed.), SIAM, Philadelpia, 1961, p. 282-290
  18. Mindlin R.D., Equations of high frequency vibrations of thermopiezoelasticity problems, International Journal of Solids and Structures, vol. 10, 1974, p. 625-637 Go to original source...
  19. Nowacki W., Some general theorems of thermo-piezoelectricity, Journal of Thermal Stresses, vol. 1, 1978, p. 171-182 Go to original source...
  20. Ohs R.R., Aluru N.R., Meshless analysis of piezoelectric devices, Computational Mechanics, vol. 27, 2001, p. 23-36 Go to original source...
  21. Pak Y.E., Linear electro-elastic fracture mechanics of piezoelectric materials, International Journal of Fracture, vol. 54, 1992, p. 79-100. Go to original source...
  22. Qin Q.H., Fracture Mechanics of Piezoelectric Materials, WIT Press, Southampton, 2001
  23. Qin Q.H., Mai Y.M., Crack growth prediction of an inclined crack in a half-plane thermopiezoelectric solid, Theoretical and Applied Fracture Mechanics, vol. 26, 1997, p. 185-191 Go to original source...
  24. Rao S.S., Sunar M., Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures, AIAA Journal, vol. 31, 1993, p. 1280-1286 Go to original source...
  25. Saez A., Garcia-Sanchez F., Dominguez J., Hypersingular BEM for dynamic fracture in 2-D piezoelectric solids, Comput. Meth. Appl. Mech. Eng., vol. 196, 2006, p. 235-246 Go to original source...
  26. Shang F., Kuna M., Kitamura T., Theoretical investigation of an elliptical crack in thermopiezoelectric material. Part I: Analytical development, Theoretical Applied Fracture Mechanics, vol. 40, 2003, p. 237-246 Go to original source...
  27. Shang F., Kitamura T., Kuna M., Theoretical investigation of an elliptical crack in thermopiezoelectric material. Part II: Crack propagation, Theoretical Applied Fracture Mechanics, vol. 40, 2003, p. 247-253 Go to original source...
  28. Sladek J., Sladek V., Atluri S.N., Meshless local Petrov-Galerkin method in anisotropic elasticity, CMES: Computer Modeling in Engn. & Sciences, vol. 6, 2004, p. 477-489
  29. Sladek J., Sladek V., Zhang Ch., Garcia-Sanchez F., Wunsche M., Meshless local Petrov-Galerkin method for plane piezoelectricity, CMC: Computers, Materials & Continua, vol. 4, 2006, p. 109-118
  30. Sladek J., Sladek V., Zhang Ch., Solek P., Starek L., Fracture analyses in continuously nonhomogeneous piezoelectric solids by the MLPG, CMES: Computer Modeling in Engn. & Sciences, vol. 19, 2007, p. 247-262
  31. Sosa H., Plane problems in piezoelectric media with defects, Int. J. Solids Structures, vol. 28, 1991, p. 491-505 Go to original source...
  32. Tsamasphyros G., Song Z.F., Analysis of a crack in a finite thermopiezoelectric plate under heat flux, International Journal of Fracture, vol. 136, 2005, p. 143-166 Go to original source...
  33. Tzou H.S., Ye R., Piezothermoelasticity and precision control of piezoelectric systems: Theory and finite element analysis, Journal of Vibration and Acoustics, vol. 116, 1994, p. 489-495 Go to original source...
  34. Ueda S., Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading, Theoretical Applied Fracture Mechanics, vol. 40, 2003, p. 225-236 Go to original source...
  35. Zhu X., Wang Z., Meng A., A functionally gradient piezoelectric actuator prepared by metallurgical process in PMN-PZ-PT system, J. Mater. Sci. Lett., vol. 14, 1995, p. 516-518 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.