Acta Mechanica Slovaca 2025, 29(3):30-40 | DOI: 10.21496/ams.2025.022

Electrical Energy Generation using Thermoelectric Modules and Plane Mirror Solar Collector

Francis Onoroh1, *, Adeyinka Abdulquadri Oluwo1, Nehemiah Sabinus Alozie1
Department of Mechanical Engineering, University of Lagos, Akoka, Yaba, Lagos Nigeria

The negative effects of global warming resulting from an over-reliance on fossil fuels have been more apparent in recent times. The impending depletion of these resources is a significant threat to humankind's future. Thus, the necessity of creating safe, reliable, and sustainable energy sources is becoming more widely acknowledged. This research developed a solar thermoelectric generator using a plane mirror as a concentrator. The system consists of a plane mirror to concentrate sunlight, a receiver plate, TEG1-241-1.4-1.2 modules, a heat sink, a storage battery, and a power inverter. Temperature across the modules' interface was measured and is used to simulate the performance metric of thermal energy across the module surfaces, power, and efficiency of conversion. The setup yielded a maximum voltage of 13.7 V, a current of 1.8 A, a power output of 15 W, and an efficiency of 8%. The findings underscore the advantages of utilizing thermoelectric modules, particularly in harnessing waste heat. The outcomes of this study contribute to the growing body of knowledge on sustainable energy systems and provide insights for further optimization and implementation.

Keywords: Solar radiation; modules; current; voltage; power; efficiency.

Received: August 12, 2025; Revised: September 23, 2025; Accepted: October 1, 2025; Published: October 1, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Onoroh, F., Abdulquadri Oluwo, A., & Sabinus Alozie, N. (2025). Electrical Energy Generation using Thermoelectric Modules and Plane Mirror Solar Collector. Acta Mechanica Slovaca29(3), 30-40. doi: 10.21496/ams.2025.022
Download citation

References

  1. . Sahu S. K.; Kopalakrishnaswami S. A. and Natarajan S. K (2020). Design and development of a low-cost solar parabolic dish concentrator system with manual dual-axis tracking. International Journal of Energy Research, 45(1). Go to original source...
  2. . Muthu G.; Thulasi S.; Dhinakaran V. and Mothilal T (2020). Performance of solar parabolic dish thermoelectric generator with PCM. Materials Today Proceedings, 37, 929-933. Go to original source...
  3. . Fan H.; Singh R. and Akbarzadeh A (2021). Electric Power Generation from Thermoelectric Cells Using a Solar Dish Concentrator. Journal of Electronic Materials, 40(5), 1312-1320. Go to original source...
  4. . Bamroongkhan P.; Lertsatitthanakorn C.; Sathapornprasath K. and Soponronnarit S. (2021). Experimental performance of a photovoltaic-assisted solar parabolic dish thermoelectric system, Case Studies in Thermal Engineering, 27, 101280, 1-9. Go to original source...
  5. . Nyandang A. N.; Singh B.; Remeli M. F. and Oberoi A (2021). Power Generation using Thermoelectric Power Generator with Parabolic Solar Dish Concentrator, Journal of Physics: Conference Series, 012004, 1-14. Go to original source...
  6. . Shittu S.; Li G.; Zhao X.; Zhou J.; Ma X. and Akhlaghi Y. G (2020). Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channelheat pipe, Energy Conversion and Management, 207, 1- 11. Go to original source...
  7. . Eswaramoorthy M. and Shanmugam S (2013). Solar Parabolic Dish Thermoelectric Generator: A Technical Study, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(5), 487-494. Go to original source...
  8. . Bakar R. A.; Singh B. S.; Remeli M. F. and Ong K. S. (2021). Theoretical model of solar thermoelectric generator for heat and power generation, IOP Conference Series Earth and Environmental Science, 685, 1-10. Go to original source...
  9. . Muhammad U. K.; Umar S.; Musa M. and DanShehu B. G. (2015). Fabrication and Performance Evaluation of a Prototype Solar Thermolectric Generator, Nigerian Journal of Solar Energy, 26, 43-50.
  10. . Acar B. and Bas S. (2018). Investigation of energy generation at test system designed by use of concentrated photo-voltaic panel and thermoelectric modules, International Journal of Renewable Energy Research, 8(4), 1859-1867.
  11. . Algarni S. and Irshad K. (2023). Performance evaluation of a hybrid thermoelectric generator and flat plate solar collector system in a semi-arid climate, Case Studies in Thermal Engineering, 44, 102842, 1-8. Go to original source...
  12. . Emad O.; Emam M.; Abdelrahman M. A. and Attia A. A. A. (2022). Studying the coupling of a concentrator photovoltaic cell with thermoelectric generator, Journal of Al-Azhar University Engineering Sector, 17(63), 577-587. Go to original source...
  13. . Hashim H. T.; Rashid F. L. and Kadham M. J. (2021). Concentration solar thermoelectric generator, Journal of Mechanical Engineering Research and Developments, 44(1), 435-443.
  14. . Sahu S. K.; Kopalakrishnaswami S. A. and Natarajan S. K. (2021). Electricity generation using solar parabolic dish system with thermoelectric generator-An experimental investigation, Heat Transfer, 50(8), 7784-9997. Go to original source...
  15. . Kumar A.; Pachauri R. K. and Chauhan Y. K. (2015). Analysis and performance improvement of solar PV system by solar irradiation tracking, International Conference on Energy Economics and Environment (ICEEE), Greater Noida, India, 1-6. Go to original source...
  16. . McQuiston F. C.; Parker J. D. and Spitter J. D. (2005). Heating, Ventilating and Air Conditioning Analysis and Design (6th ed.), United States of America, John Wiley and Sons. Inc.
  17. . Duffie J. A. and Beckman W. A. (1980). Solar Engineering of Thermal Processes (2nd ed.), New Jersey, John Wiley and Sons Inc.
  18. . Abdelkefi A.; Alothman A. and Hajj M. R. (2013). Performance Analysis and Validation of Thermoelectric Energy Harvesters, Smart Materials and Structures, 22, 1-9. Go to original source...
  19. . Enescu D. (2019). Green Energy Advances, IntechOpen, 1-38. Go to original source...
  20. . Da-Rosa A. V. and Ordonex J. C. (2021). Fundamental ofRenewable Energy Processes (4th ed.), United States of America, Elsevier Academic Press.
  21. . Lertsatitthanakorn C.; Jamradloedluk J. and Rungsiyopas M. (2014). Electricity Generation from a Solar Parabolic Concentrator Coupled to a Thermoelectric Module, Energy Procedia: 2013 International Conference on Alternative Energy in Developing Countries and Emerging Economies, 52, 150-158. Go to original source...
  22. . Rowe D. M. (2006). Thermo-electrics Handbook Nano to Macro, New York, CRC press Taylor and Francis group.
  23. . Elghool A.; Basrawi F.; Ibrahim T. K.; Habib K.; Ibrahim H. and Idris D. M. N. (2017). A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance, Energy Conversion and Management, 134, 260-277. Go to original source...
  24. . Cengel, Y. A. (2006). Heat and mass transfer. A practical approach. (3rd ed.), New York, McGraw-Hill.
  25. . Sukumar R. S; Sriharsha G.; Arun S. B.; Kumar P. D. and Naidu C. (2013). Modelling and Analysis of Heat Sink with Rectangular Fins having through Holes, International Journal of Engineering Research and Applications, 3(2), 1557-1561.
  26. . Reddy M. C. S. (2015). Thermal Analysis of a Heat Sink for Electronics Cooling, International Journal of Mechanical Engineering and Technology, 6(11), 145-153.
  27. . Shanmugam S.; Veerappan A.; Eswaramoorthy M. (2014). An Experimental Evaluation of Energy and Exergy Efficiency of a Solar Parabolic Dish Thermoelectric Power Generator, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(17), 1865-1870. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.