
14 VOLUME 29, No. 1, 2025 * Corresponding author: Leo Brada, E-mail address: leo.brada@tuke.sk

Acta Mechanica Slovaca 29 (1): 14 - 20, March 2025
https://doi.org/10.21496/ams.2025.007

Acta Mechanica Slovaca
ISSN 1335-2393

www.actamechanica.sk

Use of Gaming Engines for Robotic Simulations
and Computer Vision

Leo Brada 1,*, Marek Málik 1, Erik Prada 1 and Ľubica Miková 1

1	 Technical University of Kosice, Faculty of Mechanical Engineering, Department of Industrial Automation and Mechatronics, Park Komenského 8,
042 00 Košice

Abstract: Gaming engines have evolved beyond their traditional role in entertainment, becoming
powerful tools for robotic simulations and computer vision applications. Their ability to generate
high-fidelity, real-time simulations makes them valuable for developing and testing robotic
systems in virtual environments. The experiment demonstrated the use of the Unreal Engine,
and its computer vision plugin called UnrealCV. A realistic factory environment was created in
order to test the capability of the computer vision plugin. The article evaluates UnrealCV and its
features along with their potential use in future work. Data from depth cameras are visualized in
the form of 3D mesh and Yolo v5s AI image recognition software was tested.

Keywords: gaming engine, robotics, Unreal Engine, UnrealCV

1. Introduction

In recent years, the rapid advancement of gaming technology has transcended
beyond entertainment, finding significant applications in various fields such as
architecture, automotive, simulation, robotics, and computer vision. The gaming
engine is a software framework mainly used for video game development. It was
created as a platform for developers to create games faster by including relevant
libraries, plugins, tools, and editors. Immersive environments, real-time physics
simulations, implementation of artificial intelligence (AI), and machine learning are
very powerful features not only for gaming development but also for robotics. Modern
engines such as Unity and Unreal Engine are always innovating and implementing
new powerful features to further elevate the usability of the engines. Adaptability,
usability, and almost unlimited scenarios are the benefits of using the gaming engine
for robotic simulations. Academic researchers are creating many plugins and tools to
incorporate robotic systems into gaming engines and create digital twins. The creation
of high-fidelity and photorealistic environments is greatly useful for AI and computer
vision (CV) training. Because of their powerful rendering capabilities, high fidelity and
photorealistic environments can be created thus allowing engines to create a synthetic
dataset for robot navigation, object detection, multiple robot interaction, and computer
vision. In robotics computer vision is a system that allows robots to interpret visual and
sensory data and understand their surroundings. CV is used everywhere in robotics from
simple ultrasonic distance sensors to RGBD cameras and LiDAR (Light detection and
ranging) sensors. These sensors combined with AI and complex algorithms will allow
robots to detect objects in the environment, create a visual map of the environment,
and react adequately to the situation. In order to teach robots how to recognize their
surroundings it is needed to train the AI to control the robot's movements and actions.
Training can be achieved either by letting the robot move in the real environment
and gather data or by simulating the environment and training the robot virtually.

AMS _1-2025.indd 14AMS _1-2025.indd 14 15. 7. 2025 10:27:1515. 7. 2025 10:27:15

Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

15

Robot simulation is very beneficial for simulating
CV because contrary to the real-world environment,
the robot cannot be damaged by the dynamic
environment, and a variety of environments and
situations can be simulated.

2. Practical Use
Unity and Unreal Engine were concluded to be

most suitable for robotic simulation [1]. The main
difference between the two is the use cases. Unity
is better used for mobile games, 2D projects, and
AR (augmented reality) applications. In general,
Unity is used for lightweight applications. On the
other hand, the Unreal engine is used for high-
end games and simulations, photorealistic scene
rendering, and VR (virtual reality) applications. The
significant drawback of gaming engines is their
hardware requirements. Although scene rendering
is highly optimized, the physics simulation can still
be computationally intensive which can limit the
scale of simulation. Unity is ideal if the hardware
running the simulation is not powerful. Unreal
engine requires more computational power but
offers more complex features such as ray tracing
and Lumen technology. Inverse and forward
kinematics are also very beneficial for simulating
complex mechanisms. In comparison to industry
standard simulators such as Gazebo, Webots, and
NVIDIA Isaac Sim, gaming engines offer robust
simulation environments with realistic physics and
photorealistic graphics. Gaming engines are also
widely available without the need for an expensive
license and offer extensive documentation. Due
to large communities using the engines, many
custom projects, plugins, and sample projects were
created, thus the creation process can be drastically
accelerated. When talking about robotic systems,
the increasingly popular middleware called Robot
Operating System (ROS) is used. This middleware
allows components of a robot such as actuators and
sensors to communicate with each other. Gaming
engines cannot communicate with ROS out of the
box. The popularity of game engines in robotic
simulation allowed the creation of communication
interfaces between the engine and ROS system [2].
Bi-directional communication can be established
and used to create digital twins, teleoperation, and
machine learning. For example, Unity was used as
a platform for monitoring robotic welders utilizing
Rosbridge as a communication protocol between

ROS and Unity [3]. Robotic teleoperation can also be
achieved in Unity and Unreal Engine. Teleoperation
of robotic arms [4], hands [5], drones, unmanned
ground vehicles [6], and a lot more. Complicated
terrain such as the sea floor and underwater
environment can be created to simulate submarine
movement and navigation [7]. Drone simulations
are also very useful for control and navigation in the
environment even for the detection of obstacles
at high speeds [8]. AirSim created by Microsoft is
used for drone and autonomous vehicle simulation
utilizing CV [9]. CV is often simulated by the OpenCV
[10] framework which is an open-source library.
For the Unreal engine, a custom UnrealCV plugin
was created based on the OpenCV [11]. Dynamic
environment can also be achieved for testing CV
and more dynamic robot navigation algorithms for
example in Unreal Engine by utilizing the Chaos
physics system [12].

3. Experimental Work
For this experiment, the Unreal Engine (UE)

was chosen as the simulation environment. The
UnrealCV plugin was tested and experimented with
to explore the possible limitations [13]. Firstly, it is
necessary to choose the version of UE because the
plugin was created for the latest versions of UE4,
but one version was created for UE5.2. This version
was used and experimented with. The installation
process was simple but required manual rebuilding
of the project in Visual Studio. After the successful
rebuilding of the project, the plugin was active and
ready. To add immersion to the simulation the 3D
model of a robot was downloaded. The chosen
robot was Jethexa by Hiwonder which is a hexapod
robot powered by an NVIDIA Jetson controller. The
model is this robot was acquired and imported into
the UE. A third-person template was used to speed
up the process of setting up the control system. The
CV system will be applied to any active camera when
playing in the editor. Since the default pawn has a
camera, this was used for the CV. UnrealCV works by
writing commands into the UE command line while
the simulation runs. The command for changing the
camera mode is “vset /viewmode [mode]”. As shown
in Figure. 1 there are 4 modes used: lit (standard
view), depth, normal, and object_mask. Apart from
object_mask, all other modes worked well. Object_
mask is supposed to execute object segmentation
and assign every object to a different color, but this

AMS _1-2025.indd 15AMS _1-2025.indd 15 15. 7. 2025 10:27:1515. 7. 2025 10:27:15

16 VOLUME 29, No. 1, 2025

didn’t work on this default map. On different maps,
the object segmentation worked properly. Depth
mode is working as intended but also unrealistically
because of the unlimited range of the camera. This
was later modified. Otherwise, the simulation works
as expected.

UnrealCV offers Python scripts for the remote
connection and extraction of camera data. Firstly,
the IP and port of the simulation were required
for connection. UnrealCV automatically creates
the communication port for the Python client

Figure 1: Pictures of simulation modes: a) lit, b) depth, c) normal, d) object_mask.

()a ()b

()c ()d

to connect to. The default IP address of the UE
project is 127.0.0.1 and the port was set to 9000.
The command “vget /unrealcv/status” was used to
display the port of the simulation. Python scripting
offers many possibilities of use such as creating and
modifying cameras, data gathering and processing,
spawning, destroying, and modifying objects in the
simulation environment, and more. Python script
utilizes the Matplotlib library to display the output
of the CV. As shown in Figure 2 multiple camera
modes can be displayed simultaneously using the

Figure 2: Computer vision outputs generated by the Python script.

AMS _1-2025.indd 16AMS _1-2025.indd 16 15. 7. 2025 10:27:1515. 7. 2025 10:27:15

Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

17

subplot function. This approach is very effective and
allows further data processing. Object segmentation
works in the default map but the normals are not
displayed.

The camera used by UnrealCV is called
FusionCamSensor. If this specific camera is not
present in the simulation environment either inside
an actor or as an object in 3D space the Python script
will spawn one. The spawned camera will be placed
exactly where the main pawn camera is located at
the time of connecting to the simulation. As shown
in Figure. 2 the camera is placed lower to the ground
because the robot has the FusionCamSensor on top
of it thus the Python script doesn’t need to spawn a
new one. This is important because robots need to
move in the environment and gather data. Because
the Python script gathers the depth data in the form
of a float array. Float arrays can be modified to give
the sensor distance limit by using the numpy.clip
command. In this manner the range of the camera

Figure 3: Depth camera with limited range.

Figure 5: Mesh of depth variables from a top view.

Figure 4: Mesh of depth variables from diagonal view.

can be limited to, for example, 7.5 m as in Figure. 3.
1 cm is equal to 1 unreal unit. Data from the depth
sensor can be extracted and visualized in MATLAB
using the Scipy library. The Savemat command
allows saving the data in a MATLAB-style .mat file.
The mesh function can load and visualize this file in
a 3D mesh surface. To properly match the camera
output the created mesh was mirrored with the
“fliplr” command. Figures 4 and 5 show the flipped
3D mesh in MATLAB. The X and Y axis displays the
pixel placement of the data, and the Z axis displays

AMS _1-2025.indd 17AMS _1-2025.indd 17 15. 7. 2025 10:27:1615. 7. 2025 10:27:16

18 VOLUME 29, No. 1, 2025

the distance from the sensor. 7.5 meters was the
limit of the camera thus this distance is coloured
yellow. The graph colour changes to blue as the
distance decreases.

The big advantage of using UE is the ability to
create photorealistic environments due to the robust
rendering and realistic lighting. Combined with free-
to-use highly detailed models and photorealistic
textures, it is possible to recreate real-life locations
and simulate complex environments. For example,
in Figure. 6 the factory environment with assembly
lines and robotic welders. In Figure. 7 multiple
photos of the environment are present along with
different lighting conditions. Unreal Engine can
realistically simulate lighting and shadows with the
option to use ray tracing to achieve more realistic
environments. The possibilities are virtually endless.
In Figure. 8 the output of depth camera in the
factory environment is displayed.

Figure 7: Factory environment from different angles.

Figure 6: Photorealistic environment of the factory.

Figure 8: Depth camera in the factory environment.

As shown in Figure. 9, one problem that
occurred with object segmentation is the process of
segmentation based on the actors of the scene. The
floor is composed of many square actors thus the
segmentation coloured them all different colours.
Similarly, in office spaces depending on the scene
creation the table, chairs, and accessories are either
segmented separately or as one solid object. This
might be problematic in the future thus great care
must be taken in creating the environments. Image

AMS _1-2025.indd 18AMS _1-2025.indd 18 15. 7. 2025 10:27:1615. 7. 2025 10:27:16

Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

19

Figure 9: Object segmentation in the a) factory and b) office environment.

recognition was also tested via the Ultralytics Yolo
vision AI. Output data from the cameras are fed
directly into the AI via the Python script. This allows
users to further improve the system by allowing
it to recognize objects, patterns, and more. It can
also be trained to the needs of the simulation. Pre-
trained Yolo v5s [14] was tested although the factory
environment is not suited and needs to be trained for
the environment. The office environment was better
suited for the AI. As shown in Figure. 10, the AI could
recognize objects in an office environment such
as a mouse, chair, person, and computer monitors.
Also, computer vision can be used in combination
with ROS to create a virtual map of the robot's
surroundings thus making him understand where
he is currently and what are his surroundings. Visual
SLAM (simultaneous localization and mapping)
can be used by implementing communication
with ROS by sending the data from the CV to the
SLAM algorithms. This approach is great for testing
the robot's navigation and perception and will be
experimented on in the future,

4. Conclusions
Robotic simulation and computer vision are

essential parts of developing robotic systems.
Game engines are used in the industry not only

()a ()b

Figure 10: Yolo v5 image recognition in factory and office environments.

for visualization but for robotic simulations too.
By leveraging photorealistic rendering, real-time
physics, and synthetic data generation they improve
robotic simulations and offer more possibilities for
realistic computer vision simulations. The use of
Unity and Unreal engine were discussed. Unreal
engine was used as the simulation environment due
to its high-fidelity rendering, realistic lighting, and
implementation of the UnrealCV plugin. UnrealCV
proved to be a suitable plugin for computer vision in
the virtual environment and will be used in the future
for robotic navigation in the virtual environment.
MATLAB was used to visualize the depth camera
data in 3D mesh for a simple understanding of
distances from the camera. Problems with object
segmentation occurred but the attention to the
creation process of the environment negates it. AI
implementation is also possible and will be very
beneficial for future testing. Pre-trained Yolo v5s
algorithm was used but for the warehouse and
factory environment, it needs to be retrained.

Acknowledgments
The authors would like to thank the Slovak Grant Agency projects
KEGA 008TUKE-4/2024 named Implementation of machine
learning methods in the teaching of industrial automation
and robotics, and VEGA 1/0409/25 named Unconventional and

AMS _1-2025.indd 19AMS _1-2025.indd 19 15. 7. 2025 10:27:1715. 7. 2025 10:27:17

20 VOLUME 29, No. 1, 2025

soft robotic structures which was supported by the Ministry of
Education of the Slovak Republic.

References
1.	 Zarco, L., Siegert, J., Schlegel, T. and Bauernhansl, T., 2021.

Scope and delimitation of game engine simulations for

ultra-flexible production environments. Procedia CIRP, 104,

pp.792-797.

2.	 Whitney, D., Rosen, E., Ullman, D., Phillips, E. and Tellex, S.,

2018, October. Ros reality: A virtual reality framework using

consumer-grade hardware for ros-enabled robots. In 2018

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) (pp. 1-9). IEEE.

3.	 Sita, E., Horváth, C.M., Thomessen, T., Korondi, P. and Pipe,

A.G., 2017, December. ROS-Unity3D based system for

monitoring of an industrial robotic process. In 2017 IEEE/

SICE International Symposium on System Integration (SII)

(pp. 1047-1052). IEEE.

4.	 Shamaine, C.X.E., Qiao, Y., Henry, J., McNevin, K. and Murray,

N., 2020, September. RoSTAR: ROS-based telerobotic control

via augmented reality. In 2020 IEEE 22nd International

Workshop on Multimedia Signal Processing (MMSP) (pp.

1-6). IEEE.

5.	 Martinez-Gonzalez, P., Oprea, S., Garcia-Garcia, A., Jover-

Alvarez, A., Orts-Escolano, S. and Garcia-Rodriguez, J.,

2020. Unrealrox: an extremely photorealistic virtual reality

environment for robotics simulations and synthetic data

generation. Virtual Reality, 24, pp.271-288.

6.	 Zaman, N., Tavakkoli, A. and Papachristos, C., 2020, April.

‘Tele-robotics via an efficient immersive virtual reality

architecture. In Proc. 3rd Int. Workshop Virtual, Augmented,

Mixed Reality HRI.

7.	 Chaudhary, A., Mishra, R., Kalyan, B. and Chitre, M., 2021,

September. Development of an underwater simulator

using unity3d and robot operating system. In OCEANS

2021: San Diego–Porto (pp. 1-7). IEEE.

8.	 Meng, W., Hu, Y., Lin, J., Lin, F. and Teo, R., 2015, November.

ROS+ unity: An efficient high-fidelity 3D multi-UAV

navigation and control simulator in GPS-denied

environments. In IECON 2015-41st Annual Conference of

the IEEE Industrial Electronics Society (pp. 002562-002567).

IEEE.

9.	 Shah, S., Dey, D., Lovett, C. and Kapoor, A., 2018. Airsim:

High-fidelity visual and physical simulation for autonomous

vehicles. In Field and Service Robotics: Results of the

11th International Conference (pp. 621-635). Springer

International Publishing.

10.	 OpenCV team, OpenCV, from https://opencv.org/

11.	 Qiu, W. and Yuille, A., 2016. Unrealcv: Connecting computer

vision to unreal engine. In Computer Vision–ECCV 2016

Workshops: Amsterdam, The Netherlands, October 8-10

and 15-16, 2016, Proceedings, Part III 14 (pp. 909-916).

Springer International Publishing.

12.	 Chaudhary, A., Tiwari, K. and Bera, A., 2023. HEROES: Unreal

Engine-based Human and Emergency Robot Operation

Education System. arXiv preprint arXiv:2309.14508.

13.	 Qiu, W., Zhong, F., Zhang, Y., Qiao, S., Xiao, Z., Kim, T. S.,

& Wang, Y. (2017, October). Unrealcv: Virtual worlds

for computer vision. In Proceedings of the 25th ACM

international conference on Multimedia (pp. 1221-1224).

14.	 Jocher, Glenn, Ayush Chaurasia, Alex Stoken, Jirka

Borovec, Yonghye Kwon, Kalen Michael, Jiacong Fang et

al. "ultralytics/yolov5: v7. 0-yolov5 sota realtime instance

segmentation." Zenodo (2022).

AMS _1-2025.indd 20AMS _1-2025.indd 20 15. 7. 2025 10:27:1815. 7. 2025 10:27:18

