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Abstract: This study utilized a full factorial design with three factors at two levels each: thermal 
conductivity, pipe length, and air velocity. We aimed to identify optimal EAHE configurations 
for both summer cooling (maximum air temperature reduction) and winter heating (maximum 
temperature increase). Distinct optimal conditions emerged for each season. For summer cooling 
and winter heating, optimal configurations involved high thermal conductivity, moderate pipe 
length, and minimal air velocity. Statistical analysis revealed pipe length as the most influential 
factor on temperature in both seasons, explaining over 59% of the variability in winter and 49.43% 
in summer. Air velocity exerted a significant impact, while thermal conductivity had a smaller 
but still important influence. These findings showcase the effectiveness of full factorial design in 
unraveling complex interactions and pinpointing key parameters for EAHE optimization.

Keywords: Earth-air heat exchanger (EAHE), full factorial design, summer cooling, winter heating, 
Sustainable technologies.

1. Introduction

Energy consumption has surged dramatically over the past decade, primarily 
driven by rapid advancements in the residential, commercial, and industrial sectors. 
Buildings, for instance, consume over 40% of global energy and contribute to one-third 
of total greenhouse gas emissions [1]. Conventional heating and cooling systems pose 
significant environmental threats, including elevated CO2 emissions, global warming, 
intensified greenhouse effects, urban heat island phenomena, strained peak electrical 
demands, and compromised indoor air quality [2].

To achieve sustainable reductions in household energy consumption, consider 
implementing an earth-air heat exchanger (EAHE). This underground piping system 
harnesses ambient air for heating in winter and cooling in summer, minimizing energy 
consumption while maintaining indoor thermal comfort [3]. EAHE systems capitalize 
on the relatively stable soil temperature at depths between 1 and 6 m by employing 
underground pipes to transport indoor or outdoor air, facilitating effective thermal 
exchange [4–7].

Numerous studies have been conducted over the past two decades to develop 
analytical and numerical models for evaluating EAHE systems. A one-dimensional 
(1D) model was presented by De Paepe et al. [8] to investigate how an EAHE's 
design characteristics influence its thermal-hydraulic performance. Goswami et al. [9] 
developed a 1D time-dependent theoretical model to predict the efficiency of earth-to-
air heat exchangers. Isotropic soil properties were assumed. Good agreement was found 
when comparing theoretical predictions with experimental observations. Fazlikhani et 
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al. [10] formulated a 1D steady-state model to assess 
EAHE performance, considering soil temperature 
variations but not thermal conductivity. Their model 
achieved a maximum relative difference of 1.7°C 
from experimental measurements. The findings 
demonstrated that as EAHE length increases, so 
does its efficiency.

Based on a two-dimensional (2D) numerical 
transient technique, Badescu [11] created a simple 
and accurate model of an EAHE that enabled the 
calculation of soil temperature at various depths and 
at the surface. To predict the thermal performance of 
earth-air-pipe heat exchanger systems, Bansal et al. 
[12, 13] developed a validated transient and implicit 
computational fluid dynamics (CFD) model within 
the FLUENT simulation tool. Excellent agreement 
was observed between simulated and experimental 
outcomes when the model was tested using 
experimental data from an Ajmer-based setup in 
Western India. Rosà et al. [14] simulated an EAHE's 
transient behavior using ANSYS-CFX® for heating 
and cooling. Results indicated that, for a fixed pipe 
diameter and spacing, increased airflow velocity 
reduced thermal performance, particularly during 
cooling (higher outlet air temperatures).

Design of experiments (DoE) efficiently plans 
experiments to extract meaningful information. 
It utilizes a minimal number of experiments, 
systematically varying multiple parameters 
simultaneously to gather sufficient data. This data 
then informs the development of a mathematical 
model for the studied process [15]. Response 
surface approach (RSM) is a powerful statistical 
tool for creating and refining product and process 
designs. It is a subclass of DoE methods [16] that has 
been employed by several researchers [17–19]. CFD 
technology was used to simulate all the necessary 
tests in order to construct the RSM model since it 
is significantly less expensive than conducting field 
experiments.

Statistical analysis plays a crucial role in scientific 
inquiry, enabling researchers to collect, interpret, 
and draw meaningful conclusions from data. 
The advancements in this field have significantly 
enhanced our ability to predict material behavior. 
For instance, [20] employed both Weibull and 
ANOVA analyses to investigate the B-basis values of 
CFRP composites, highlighting the suitability of the 
Weibull distribution and the limitations of ANOVA in 
specific cases. Similarly, [21] developed a multi-linear 

regression model to predict debonding loads in 
composites and concrete, demonstrating superior 
accuracy compared to alternative approaches. 
Furthermore, [22] combined ARIMA, ARTFIMA, 
and SVM models to achieve superior performance 
in greenhouse climate forecasting, showcasing 
the effectiveness of hybrid models. Finally, [23] 
introduced a novel correlation-based algorithm 
optimized with Shannon entropy for damage 
identification in aluminum plates, exemplifying the 
potential of advanced statistical approaches for 
material characterization.

This study seeks to develop innovative 
mathematical models using a unique approach that 
differs from previous research, specifically employing 
a full factorial design. The primary objective is to 
estimate the cooling and heating efficiency of 
EAHE within buildings during both the summer 
and winter seasons. The specific goals encompass: 
first, the development and validation of two 
mathematical models based on experimental data 
to predict the air temperature difference between 
the inlet and outlet; and second, the evaluation of 
the influence of the parameters under investigation 
using ANOVA. Third, the ultimate aim is to identify 
optimal parameter values that can substantially 
enhance the cooling and heating performance of 
EAHE systems.

2. Experimental 
Figure 1 illustrates the deployment of an EAHE 

system featuring two horizontal cylindrical pipes 
with a 0.15m inner diameter and a buried length of 
23.42m. Comprising a blend of PVC and mild steel 
materials, these pipes were buried at a depth of 
2.7 m in level ground with dry soil. A 1 HP single-
phase motorized blower operates at 2800 RPM 
and sustains an airflow rate of 0.033 m3/s through 
a vertical pipe connected to the subsurface pipe. 
The inlet and outlet temperatures of the subsurface 
pipe were denoted as Tinlet and Texit, respectively. 
A thermocouple at location (L = 10.03 m), identified 
as T1, measured the air temperature within the pipe. 
Valves allowed the adjustment of airflow through 
each pipe. Inlet temperatures and experimental 
data for both the summer and winter seasons were 
sourced from [12, 13].

3. Experimental design
To comprehensively evaluate the systematic 
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variations in response across different measurement 
conditions, a full factorial design with two 
levels (2k) was employed. This design enabled 
the simultaneous investigation of all potential 
interactions among the k = 3 independent variables, 
preventing any confounding effects that might arise 
from examining factors in isolation [24]. Equation (1) 
depicts the first-order polynomial model [25].

Figure 1: Illustrator image of the air-ground exchanger.
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In the first-order polynomial model, β0 
represents the mean score, βj denotes the linear 
factors, and βij represents the interaction factors. The 
letters Xj represent the model's factors, while factor 
combinations such as XiXj represent interactions 
between the various components.

This study delved into the influence of three 
key factors: pipe conductivity, which was varied 
between PVC 0.16 W/m.k and mild steel 54 W/m.k 
named (X1), pipe length (X2), and air velocity (X3), 
on the temperature response of the EAHE system. 
Temperature was considered as the dependent 
variable (response). Table 1 presents the three 
parameters and their respective levels employed 
in the experiment. Factor levels were denoted 
by the numbers -1 (low) and 1 (high). The results 
were subsequently analyzed with 95% confidence 
intervals.
3.1 Estimation of the sum of squares:

The initial stages of analyzing experimental 
design involve crucial computations to determine 

the effects of different factors and assess their 
statistical significance [26]. The effect of each factor 
on the response variable must be estimated. As 
shown in Equation (2), this estimation can be done 
for individual factors.

Table 1: Experimental ranges and levels of independent 
variables.

Coded 
variable 

(Xi)
Description units

Experimental field

Min. value 
( - 1)

Max.value 
(+1)

X
1

Pipe 
conductivity

(W/m.k) 0.16 54

X
2

Pipe length (m) 10.0371 23.42

X
3

Air velocity (m/s) 2 5

( ) ( )1 1
1 1

/ 2

n n
i ii i

y y
Effect

n
= =

+ − −
= ∑ ∑ ( )2

Where n is the number of experimental points 
at each level and y is the corresponding response 
for each point. 

The sum of squares of each factor and interaction 
is calculated analytically using Equation (3).

( )2

4
NSS Effect= ( )3

Where N is the number of runs.
3.2 Regression and graphical analysis: 

Regression analysis is employed to establish the 
mathematical relationship between independent 
factors and the response variable. The response is 
predicted using various combinations of process 
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parameters at their highest coefficient values 
[27]. STATISTICA software (Stat Soft, Inc., USA) 
version 10 was employed for data processing and 
analysis. STATISTICA is a comprehensive software 
package offering capabilities for statistical analysis, 
data mining, data visualization, and predictive 
modeling. Its diverse suite of tools caters to 
the needs of researchers, statisticians, and data 
analysts, facilitating thorough data exploration and 
insightful analysis. Graphical tools, including normal 
probability plots of residuals and contour plots, 
were utilized to analyze the factorial design and 
assess the adequacy of the fitted model.
3.3 Percentage contribution: 

The percentage contribution of each parameter 
in a full factorial design quantifies the extent to 
which each factor influences the overall variability 
in the response variable. It is calculated as follows:

100i
i

ss

SSPercentage contribution of factor
Total
 

= ⋅ 
 

( )4

Where:
–  SSi is the sum of squares for factor i.
–  Total SS is the total sum of squares.

4. Results and Discussion
4.1 Experimental results: 

Table 2 presents the design matrix for EAHE 
system, including real variables and experimental 
responses. Real variables represent the actual values 
for pipe conductivity, pipe length, and air velocity. 
The responses, represented as temperatures (Y

1
 and 

Y
2
), correspond to the outcomes observed during 

both the summer and winter seasons.
Table 2: Experimental data.

Experiment
X

1
: Pipe 

conductivity 
(W/m.k)

X
2
: Length 
of Pipe 

(m)

X
3
: Air 

velocity 
(m/s)

Temperature 
(k)

Y
1

Y
2

1 0.16 10.037 2 24 35

2 54 10.037 2 24.3 33.6

3 0.16 23.42 2 25.1 33.1

4 54 23.42 2 25.4 31

5 0.16 10.037 5 22.9 37

6 54 10.037 5 23.3 36.5

7 0.16 23.42 5 24.2 34.2

8 54 23.42 5 24.7 33.7

4.2 Optimization by full factorial design: 
Regression analysis yielded a predictive model 

for EAHE system temperature based on the 
experimental data collected. The resulting first-order 
polynomial equation (Equations 5 and 6) reveals the 
intricate relationship between coded factors (pipe 
conductivity, pipe length, and air velocity, denoted 
by X

1
, X

2
, and X

3
) and response variables (Y

1
 for 

winter and Y
2
 for summer). This model empowers 

researchers to make predictions for specific factor 
levels, paving the way for optimized EAHE system 
design and operation.

Figures 2a and 2b present normal probability 
plots (NPPs) to assess the normality of the 
residuals and the differences between observed 
and predicted responses in our models. Verifying 
residual normality is critical for ensuring the validity 
of statistical inferences drawn from the model. The 
horizontal axis in both NPPs represents predicted 
values, while the vertical axis represents observed 
values. The close adherence of data points to the 
straight reference line in both figures suggests 
that the residuals follow a normal distribution, 
supporting the validity of our models and the 
reliability of the conclusions drawn from them. This 
adherence shows that the models correctly show 
the underlying relationships in the data without big 
departures from normality. This makes our statistical 
conclusions more reliable.

Table 3 presents the results of the analysis of 
variance (ANOVA) performed for the winter season. 
The model F-value, reaching an impressive 671.67, 
unequivocally highlights the overall significance 
of the model. The corresponding P-value of 0.0295 
implies a negligible 2.95% probability of obtaining 
such a substantial F-value by chance, firmly 
establishing the model's statistical significance.

Delving into individual model terms reveals 
that P-values below 0.05 indicate significant effects. 
Notably, the terms (X

1
) pipe conductivity, (X

2
) 

pipe length, and (X
3
) air velocity are all statistically 

significant, as evidenced by their respective 
P-values of 0.042379*, 0.012990*, and 0.017202*. It 
is noteworthy that none of the interaction terms 
(X1X2, X1X3, X2X3) achieve statistical significance, 
as their P-values all surpass 0.05. The error row 
represents unexplained variability with a mean 

1 1 2 3 1 2 1 3 2 324.2375 0.1875 0.6125 0.4625 0.0125 0.0375 0.0625Y X X X X X X X X X= + + − + + +

2 1 2 3 1 2 1 3 2 334.2625 0.5625 1.2625 1.0875 0.0875 0.3125 0.1375Y X X X X X X X X X= − − + − + −

( )5

( )6
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Figure 2: Normal probability plot of residuals. (a) Represents 
the results of the winter season. (b) Represents the results of 
the summer season.
square (MS) of 0.00125. Total SS (sum of squares) 
serves as an overall measure of variability in the 
response variable.

Table 4 presents the ANOVA results for the 
summer season. The model F-value of 70.03 
indicates overall significance, with a 9.12% 
probability of obtaining such a large F-value due 
Table 3: Results of ANOVA for winter.

Effect SS Df MS F-ratio P-value

Model 5.04 6 0.8396 671.67 0.0295*

(X
1
) pipe conductivity 0.375 0.28125 1 0.28125 225 0.042379*

(X
2
) pipe length 1.225 3.00125 1 3.00125 2401 0.012990*

(X
3
) air velocity -0.925 1.71125 1 1.71125 1369 0.017202*

X
1
X

2
0.025 0.00125 1 0.01125 1 0.5

X
1
X

3
0.075 0.01125 1 0.01125 9 0.2048

X
2
X

3
0.125 0.03125 1 0.03125 25 0.1256

Error 0.00125 1 0.00125

Total SS 5.03875 7

to random fluctuations. Among individual model 
terms, only factor X

2
 (pipe length) exhibits statistical 

significance, as evidenced by a P-value of 0.044052*. 
None of the interaction terms (X

1
X

2
, X

1
X

3
, and X

2
X

3
) 

demonstrate statistical significance, as their P-values 
surpass 0.05. The error row represents unexplained 
variability with a mean square (MS) of 0.06125.

Figure 3 provides temperature contour maps 
inside the EAHE at constant airflow (5m/s). The 
graphic demonstrates the impact of pipe length 
(8–24m) and conductivity (0–60W/m.K.) on 
temperature distribution. Higher temperatures (red) 
concentrate towards the outlet and with increasing 
conductivity (use mild steel pipe 54W/m.K.). 
Extending length to 21–24m further enhances 
heat extraction, indicating an ideal equilibrium for 
maximum EAHE performance. 

Figure 3: illustrates the influence of pipe length and pipe 
conductivity on the temperature distribution for winter 
seasons.
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Table 4: Results of ANOVA for summer.

Effect SS Df MS F-ratio P-value

Model 25.74 6 4.29 70.03 0.0912

(X
1
) pipe conductivity -1.125 2.53125 1 2.53125 41.3265 0.098242

(X
2
) pipe length -2.525 12.75125 1 12.75125 208.1837 0.044052*

(X
3
) air velocity 2.175 9.46125 1 9.46125 154.4694 0.051112

X
1
X

2
-0.175 0.06125 1 0.06125 1 0.5

X
1
X

3
0.625 0.78125 1 0.78125 12.7551 0.173803

X
2
X

3
0.275 0.15125 1 0.15125 2.4694 0.360791

Error 0.06125 1 0.06125

Total SS 25.79875 7

Figure 4 depicts the temperature distribution 
as a function of pipe length and air velocity. Pipe 
length (8–24m) is displayed on the horizontal axis, 
and air velocity (1.5–5.5m/s) on the vertical axis. The 
colormap indicates the EAHE temperature, with 
green colors denoting temperatures below 22.5°C 
and red hues surpassing 25°C. Thermal conductivity 
remained constant at 0.16W/m.K.; significantly, 
increased air velocity leads to decreased air 
temperature. This may be due to the decreased air 
residence time in the pipes, which reduces heat 
exchange with the ground and decreases the 
outgoing air temperature.

Figure 4: illustrates the influence of pipe length and air velocity 
on the temperature distribution for winter seasons.

Figures 3 and 4 represent winter season results; 
maximizing temperature is crucial for heating 
applications. To achieve temperatures exceeding 
24.5 degrees Celsius, the study suggests air velocity 
below 2.5m/s and a pipe length exceeding 20m, 
up to a maximum of 22m. increasing the pipe 
length beyond this point becomes progressively 
impractical. And use a pipe with high thermal 
conductivity.

Figure 5 illustrates the temperature distribution 
in response to pipe length and air velocity. The x-axis 
shows pipe length, ranging from 8 to 24m, while 
the y-axis depicts air velocity, which varies from 1 
to 5.5 m/s. A colormap delineates the temperature 
range (32.75°C–<37°C), where colder shades of 
green represent lower temperatures, while warmer 
red colors signify higher values. The maximum 
temperature is seen at the pipe at 8m, corresponding 
to the hottest air. As the air crosses the pipe, it 
undergoes cooling owing to heat exchange with 
the nearby earth. This cooling impact lessens with 
increased air velocity, suggesting decreased time for 
heat exchange with the earth.

Figure 5: illustrates the influence of pipe length and air velocity 
on the temperature distribution for summer seasons.

Figure 6 depicts the temperature distribution 
considering varying pipe lengths and conductivities. 
The abscissa delineates the pipe's length, extending 
from 8 to 24m, while the ordinate illustrates the 
thermal conductivity of the pipe, swinging between 
0 and 60W/m.K. The color gradient represents the 
temperature within the EAHE system: shades of 
green correlate to colder temperatures (<32.25°C), 
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and red colors imply higher temperatures (>36°C). 
As predicted, the research suggests that the 
most muted temperatures materialize in the top 
right quadrant of the contour plot, characterized 
by extended pipes and heightened thermal 
conductivity. This effect is attributable to the 
greater surface area of longer pipes, permitting 
higher heat exchange with the neighboring earth. 
Additionally, materials with increased conductivity 
display greater heat transfer efficiency. In contrast, 
the highest increased temperatures are centered in 
the bottom left quadrant, characterized by shorter 
pipe lengths and decreased thermal conductivity. 
For best summertime circumstances, the study 
suggests keeping a thermal conductivity of 
54W/m.k., sticking to pipe lengths between 20 and 
22m, and confining the airflow velocity ratio to a 
maximum threshold of 2.5m/s.

Figure 6: illustrates the influence of pipe length and pipe 
conductivity on the temperature distribution for summer 
seasons.

Figure 7: Percentage contribution of each parameter.

4.3 Percentage contribution of each parameter: 
Figure 7 delineates the proportionate 

contributions of each components to the total 
temperature fluctuation over winter and summer, 
derived by Equation (4). Pipe length significantly 
comes up as the key factor in both seasonal studies, 
contributing 59.56% and 49.43% of the variability for 
winter and summer, respectively. Air velocity follows 
as the second important element, accounting for 
33.96% in winter and 36.67% in summer. Conversely, 
thermal conductivity has a considerably weaker 
influence, accounting for a moderate 5.58% in 
winter and 9.81% in summer of the measured range.

5. Conclusions
This study employed a full factorial design 

technique to optimize the summer air temperature 
decrease and winter air temperature increase in an 
earth-air heat exchanger (EAHE) system for both 
heating and cooling applications. Three operational 
parameters were investigated at two levels each, 
yielding a total of eight experimental runs. The key 
findings and observations of the study are as follows:
–  A first-order polynomial model accurately predicts EAHE system 
temperatures based on coded operational parameters (pipe 
conductivity, length, and air velocity). This empowers researchers 
and engineers to optimize system design and operation for specific 
seasonal requirements, contributing to more efficient and sustainable 
heating and cooling solutions.
–  Model validity confirmed: Statistical analysis and normal 
probability plots validate the model's reliability, ensuring accurate 
data representation and reliable predictions.
–  Significant factors identified: pipe length emerges as the dominant 
factor influencing temperature in both winter and summer, followed 
by air velocity. Thermal conductivity plays a smaller role, but its 
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optimization can still enhance system performance.
–  Seasonal recommendations: distinct optimal operating conditions 
are identified for winter and summer. Maximizing and reducing 
temperature in winter and summer requires mild steel pipes, longer 
lengths (21–24m), and limiting air velocity (2.5m/s).
–  Employing a full factorial design in this (EAHE) study proved 
instrumental, yielding a rich dataset of immense value. This robust 
experimental method lays a solid foundation for further research and 
in-depth analysis in this field.
–  Future research directions: expanding the model to include 
additional influencing factors, validating it across diverse soil types 
and climates, and exploring its potential for real-time EAHE control are 
promising avenues for future research, further advancing sustainable 
heating and cooling technologies.

Abbreviations 

EAHE Earth-Air Heat Exchanger

CO2 Carbon Dioxide

1D One-dimensional

2D Two-Dimensional

CFD Computational Fluid Dynamics

ANSYS-CFX ANSYS-Computational Fluid Dynamics

DOE Design of Experiments

RSM Response Surface Methodology

ANOVA Analysis of Variance

ARIMA Auto Regressive Integrated Moving 
Average

ARTFIMA Auto Regressive Fractionally Integrated 
Moving Average

SVM Support Vector Machine

CFRP Carbon Fiber Reinforced Polymer

PVC Polyvinyl Chloride

HP Horsepower

RPM Revolutions Per Minute

MSresidual Mean square of the residuals

SS Sum of squares

NPP Normal probability plots

MS Mean Square
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