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Abstract: In the backward metal flow forming process, the mean thickness of flow formed tubes is 
crucial in determining the quality. Consequently, predicting the mean thickness in incremental 
forming and correlating these values with the forming parameters can be useful to control this 
vital target. Accordingly, four different techniques of adaptive neuro-fuzzy inference system 
(ANFIS) is used to predict the mean thickness of parts produced by the backward metal flow 
forming process. The objective is to determine the best membership function of the different 
approaches used in ANFIS. Also, the efficiency of the developed predictive models is compared 
statistically to determine the best technique. 
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1. Introduction

The metal flow forming process finds its application in the aerospace, defence and 
automobile industries [1]. In aerospace, it is widely used in the production of drive 
shafts for helicopters and airplanes [2]. The shafts manufactured by the flow forming 
process eliminates the distortion in wall thickness, thus reducing the cost for balancing. 
Tailor rotor shafts used in helicopters are often made up of titanium, stainless steel, 
or aluminium [3]. The shafts are required to be straight, and very high precision is 
necessary for the thickness of the flow formed tubes. This precision could be achieved 
easily by the metal flow forming process. The metal flow forming process finds its 
application in the automobile industry. Flow formed components with high precision 
in wall thickness are used as disc carriers. Such members are exposed to high strain [4]. 
The cold flow formed components provide high strength components. Thin walled 
high strength are some of the prerequisites for rocket motors and other light-weight 
construction parts such warheads. Thus, maintaining high precision for the thickness 
of flow formed tubes is paramount. One of the critical requirements in the metal flow 
forming process is the precision of the flow-formed tubes [5] [6] [7].

Experimental studies [8] [9] were conducted to determining essential parameters 
that influence the thickness of flow formed. Davidson et al. [10] used experimental 
analysis to study the effect of input parameters on percentage elongation. For finding 
the relationship between the forming parameters, Taguchi analysis was performed. 
The axial feed of the roller, the roller's speed, and the percentage reduction were 
considered at different levels. It was suggested that the depth of cut was the most 
critical parameter. In metal spinning, multi-pass of the roller is required to prevent 
excessive thinning of spun parts. Wang and Long [11] used Taguchi analysis to study 
the effect of forming parameters on spun tubes' mean thickness. The type of material 
used and the feed speed ratio of the roller are the critical factors. In soft materials like 
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aluminium, wrinkling occurs, while in materials 
like steel, wrinkling phenomena are not observed. 
At a high feed speed ratio, the desired thickness is 
achieved, but cracks can develop on the spun tubes' 
surface.  Banerjee et al. [12] developed a predictive 
model for determination of mean thickness with 
known input parameters. The ANN model was 
compared with statistical based regression model. 
The superior capability of ANN enabled better 
prediction than regression model. Previously ANFIS 
approach has applied to various metal forming 
processes. Bikramjit et al. [13] used ANFIS to model 
the dimensional accuracy like inside diameter, 
spring-back, and flow-formed tubes' ovality. The 
ANFIS model outperformed the regression model 
in the prediction of the inside diameter, springback 
and ovality. Bikramjit et al. [14] compared the forward 
and the reverse model based neural networks. The 
networks were optimized using three techniques 
such as back propagation, LBFGS and genetic 
algorithm. Among the three techniques, GANN 
emerged as the best technique in the prediction of 
the final dimension of flow formed tubes. 

ANFIS is a combination of two soft computing 
techniques, such as artificial neural network (ANN) 
and fuzzy logic theory. The ANFIS is trained just like 
an artificial neural network and the solutions are 
mapped through a fuzzy inference system [15] [16]. 
In this research, ANFIS is used to model the input 
parameters for the determination of the output of 
the backward flow forming process.  Seven different 
membership functions are considered in the four 
different approaches. Measures of different error 
are performed. Statistical comparison is made for 
identifying the approach that would efficiently 
predict the final dimension mean thickness for a set 
of input conditions. 

2. Problem formulation and Experimental 
methodology 

The flow forming process is primarily divided 
into two types, viz. forward metal flow forming and 
backward metal flow forming [17]. In backward 
metal flow forming the roller traverse in the 
opposite direction to the elongation of the tubes. In 
the forward metal flow forming process, the rollers 
move in the same direction as the metal elongation 
[18]. In this research, a backward metal flow forming 
process is used to produce long cylindrical tubes. 
The radial compression of the rollers reduces the 

thickness of the tube. The deformed material 
elongates along the axial direction. The elongating 
material is surrounded by the preform material. 
The unconstrained deformation causes variation 
in the thickness of flow formed tubes. Variation 
in thickness in flow formed products is highly 
undesirable. There is continuous engagement and 
disengagement of contact between the roller and 
the preform material. During the contact of the roller 
with the preform compressive forces are generated. 
This forces deforms the material of the preform. 
While, during no contact the forces of the roller 
is released temporarily which causes springback 
of soft ductile materials. This phenomenon often 
leads to uneven thickness along the length of the 
preform. Thus, prediction of mean thickness is of 
utmost importance for better control of the final 
dimensions of the flow formed tubes. There is no 
analytical relationship between the mean thickness 
of flow formed tubes and the input parameters of 
the flow forming process. This research explores the 
possibility of developing a predictive model based 
on soft computing technique. Through this research 
a mapping between the input and the output 
parameters would be established and prediction of 
the response would be made. 

The experiments are done based on the full 
factorial design of experiments methodology [19]. 
The input and the output parameters are shown in 
Fig.2. As stated the backward flow forming process 
is a near net shape manufacturing process that 
produces high precision long cylindrical tubes. 
The forming operation is done by Computerised 
Numerical Control machine (CNC). Figure 3 shows 
the CNC machine used in this research work. The 
workpiece prior to the forming process is termed 
as the preform. The initial dimension of the preform 
is shown in the Fig. 4(a) and Fig. 4(b) shows the 
photograph of preform and flow formed tubes. The 
long cylindrical tube shown in Fig. 4(b) is the flow 
formed tube. 

The input and the output parameters were 
selected based on available literature [20]. Three 
input factors, such as feed speed ratio [21], infeed 
[22], and axial stagger [23], are chosen. For each 
input parameter 4 levels were selected. Most of 
the literature related to metal flow forming has 
considered these parameters in their research. Thus, 
three input parameters with four levels are designed 
based on the full factorial design of experiments. 
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Therefore, 64 number of experiments along with 
one replication is done. The experiments are carried 
on a three-axis CNC flow-forming machine. The feed 
speed ratio is defined as the roller's axial velocity to 
the rotational velocity of the mandrel. Infeed is the 
percentage reduction required during one flow 
forming operation. For multiple rollers, the infeed 
is equally divided among them. Axial stagger is the 
distance between the first and the final roller. Mean 
thickness is considered as the output parameter in 
this process. Mean thickness is the average thickness 
of the tube after the forming operation. Uneven 
thickness of the tube leads to several defects such 
as wavy surface, crack formation, and enlargement 
of inner diameter [24].

Fig. 4: (a) Schematic representation of preform (b) Photograph 
of preform and flow formed tubes

3. Methodology
Figure 5 shows the schematic representation 

of the ANFIS [25] model used in this research. It 
consists of five layers. ANFIS is a combination of two 
soft computing techniques (fuzzy logic and neural 
network. Each input is considered to be attached 
with membership functions. The fuzzification 
of the real values are done by the membership 
functions. The fuzzified inputs are tuned by neural 
networks. The fuzzy rules are framed using the 
subtractive clustering technique or the grid 
partitioning method. In grid partition, the fuzzy rule 
space is uniformly partitioned. One specific area is 
designated for one rule only. Thus the storage space 
exponentially increases with increase in the number 
of input variables. In subtractive clustering the space 
is divided as clusters. Each cluster centre denotes a 
specific rule. 

Figure 1: Schematic diagram of backward metal flow forming 
process

Figure 2: Input and output parameters of a backward flow 
forming process

Figure 3: Three-axis CNC flow forming machine (Make: Leifield, 
Germany)[13] Figure 5: Schematic representation of an ANFIS structure
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Based on these two types and optimization 
techniques the ANFIS could be divided into four 
different approaches: 
–  Approach I: ANFIS is generated using grid partition and optimized 
through back propagation
–  Approach II: ANFIS is generated using grid partition and optimized 
through hybrid method
–  Approach III: ANFIS is generated using subtractive clustering and 
optimized through back-propagation 
–  Approach IV: ANFIS is generated using subtractive clustering and 
optimized through the hybrid method

In all the above approaches, seven different 
types of membership functions were used, namely: 
triangular-shaped (trimf ), generalized bell-shaped 
(gbellmf ), the difference between two sigmoidal 
functions (dsigmf ), gaussian curve (gaussmf ), π 
shaped (pimf ), a product of two sigmoidal (psigmf ), 
trapezoidal-shaped (trapmf ).

4. Results and Discussion
In this research, four types of networks are used 

for seven different types of membership functions. 
The training for all the networks is achieved using 
128 sets of data and other network parameters. The 
parameters are varied for finding out the optimized 
network. For grid partition and subtractive clustering 
using back propagation,1500 epochs are used, 
while using hybrid network 200 epochs are used. 
The parameters are varied till no significant change 
in RMSE is observed for the training data set. Based 
on the trained network, the values of the mean 
thickness are predicted. Here four different types 
of network models are used, and their prediction of 
the test data is evaluated. The error performance of 
the four different approaches is evaluated for eight 
test data. The error performance measures reported 
in Table 1, Table 3, Table 5 and Table 7 are defined in 
Eq. (1-4).

Different measures of error performance 
of approach I are shown in Table 1. 7 types of 
membership functions related to approach I 
have been used. For approach I gauss type of 
membership function gives the minimum error 
value for different performance measures. ARB's 
value is least, suggesting that the gauss type of 
membership function should be used to develop 
the predictive model. Table 2 shows the slope's 
values of the best fit line between the experimental 
value and the predicted value. The fitted line 
is expressed in the format of y=mx where m 
represents the slope of the line and x, y represents 
the target and predicted values respectively. For the 
ideal scenario the m value should be near to unity 
and the angle of the line should be at 45º. The angle 
of the fitted line is given in brackets. It is observed 
that most of the membership function yields an 
ideal line having an angle closer to the 45º. Thus, the 
slope of the best fitted line is not the best technique 
to judge the efficiency of the membership functions 
for each technique. Hence, a correlation coefficient 
is determined for evaluating the closeness of the 
predicted with the target values. The correlation 
coefficient between the experimental value and 
the predicted values are also shown in Table 2 using 
approach I. The correlation obtained using the 
gauss type of membership function is 0.8645, which 
suggests good agreement between the predicted 
value and the experimental value. Thus the 
inference drawn from Table 1 is counter supported 
by the values of Table 2. The curvilinear membership 
functions outperform the linear membership 
functions such as ‘trap’ and ‘tri’ membership 
functions. Measures of error performance all the 
curvilinear membership functions are good but 
‘gauss’ gives the least error. The Gaussian curve built-
in MF due to its smoothness and concise notation 
is a popular method for specifying fuzzy sets. The 
curves have the advantage of being smooth and 
non-zero at all points.

Table 3 shows the performance of different 
measures of error using approach 2 of the 
developed model using ANFIS technique. The ‘gbell’ 
membership function has a minimum error value 
for MSE, HMSE, RMSE, and ARB. Approach II employs 
both gradient descent and least square technique 
for optimization of weights in the network structure. 
Thus the optimization technique is better than 
that used in approach I. The back propagation has 
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Table 1: Approach I

Table 2: m and r values using approach I

Type of 
error 

Type of membership functions 
TRI GBELL DSIG GAUSS PI PSIG TRAP 

MSE 4.762 0.465 0.2042 0.1371 0.1780 0.172 0.2369 
HMSE 2.381 0.232 0.1021 0.0685 0.089 0.086 0.1184 
RMSE 2.182 0.682 0.4519 0.3703 0.4219 0.4147 0.4867 
ARB 0.319 0.114 0.0995 0.0838 0.0912 0.0941 0.1162 

 

Table 3: Approach II

Slope and 
correlation 
coefficient 

Type of membership functions 

 TRI GBELL DSIG GAUSS PI PSIG TRAP 
m 0.6797 

(34.2º) 
0.9618 
(43.9º) 

1.0152 
(45.4º) 

1.014 
(45.4º) 

1.0073 
(45.2º) 

1.0065 
(45.2º) 

1.0428 
(46.2º) 

r -0.05071 0.5116 0.7594 0.8645 0.7846 0.7941 0.7672 
 

Type of 
error 

Type of membership functions 
TRI GBELL DSIG GAUSS PI PSIG TRAP 

MSE 0.120 0.078 0.2054 0.1357 0.2244 0.2054 0.2200 
HMSE 0.060 0.039 0.1027 0.0678 0.1122 0.1027 0.1100 
RMSE 0.347 0.279 0.4532 0.3684 0.4737 0.4532 0.4691 
ARB 0.068 0.0614 0.0994 0.0838 0.0955 0.0994 0.0992 

 
Table 4: m and r values using approach II

Table 5: Approach III

Slope and 
correlation 
coefficient 

Type of membership functions 
TRI GBELL DSIG GAUSS PI PSIG TRAP 

m 0.9967 
(44.9º) 

1.0209 
(45.6º) 

1.0158 
(45.4º) 

1.015 
(45.4º) 

1.0227 
(45.6º) 

1.0158 
(45.4º) 

1.0228 
(45.6º) 

r 0.9069 0.9483 0.7586 0.8675 0.7447 0.7587 0.7485 
 

Type of 
error 

Type of membership functions 
TRI GBEL DSIG GAUSS PI PSIG TRAP 

MSE 0.414 0.746 0.3231 0.2320 0.5183 0.0284 0.4545 
HMSE 0.207 0.373 0.1615 0.1160 0.2591 0.0142 0.2272 
RMSE 0.643 0.864 0.5684 0.4817 0.7199 0.1685 0.6741 
ARB 0.118 0.137 0.0969 0.0900 0.1301 0.0387 0.1268 

 Table 6: m and r values using approach III

Slope and 
correlation 
coefficient 

TRI GBELL DSIG GAUSS PI PSIG TRAP 

m 1.0366 
(46.0º) 

0.9838 
(44.5º) 

0.9551 
(43.7º) 

1.0115 
(45.3º) 

1.0383 
(46.1º) 

1.0293 
(45.8º) 

1.0345 
(46.0º) 

r 0.5897 0.2157 0.5599 0.7128 0.5173 0.9963 0.5455 
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inherent problem of getting struck in the local 
minima. The measure of error for all the membership 
functions are good as the errors are less than 0.1. 
the least error is obtained for ‘gbell’ membership 
functions although the measure of errors is close to 
each other for the different membership functions. 
Table 4 provides the slope and the correlation 
coefficient of the different membership functions. 
As seen in Table 4, the correlation coefficient is 
0.94838, which suggests good agreement between 
the predicted and experimental value.

Table 5 shows the different measures of error 
for approach 3. As seen from Table 3, the error 
values of MSE, HMSE, RMSE, and ARB is least for 
'psig' membership function. The ‘psig’ membership 
functions are the product of two sigmoid functions. 
Also, the r values of 'psig' membership function 
is 0.99634, which is very near to 1 and suggests a 
strong correlation between the predicted and the 
experimental value. In this approach the input 
spaces are divided into clusters and thus the 
computational time is increased if small radius 
of clusters is considered. Also, back propagation 
algorithm is used for updating the weights of the 
network. Although back propagation does not 
deliver global optimum points but good correlation 
coefficient between the predicted and the target 
values are obtained.

The error performance from approach IV is 
shown in Table 7. The 'gauss' type of membership 
function used in approach IV yields minimum error. 
In this approach hybrid technique is for optimization 
of the network parameters. It is seen that all the 
membership functions have responded well as the 
error performance for all the membership functions 
is less than 0.1. Among all the membership functions 
it is inferred that the 'gauss' type of membership 
provides the least measure of error. The claims 
could also be supported from Table 8, where the 
'm' value is 1.0032. The slope of the best fit line for 
‘gauss’ type of membership function is 45.1º, which 
yields the ideal is 45º. The r values for each of the 
membership function is not close to unity but for 
‘gauss’ type of membership function highest value 
is obtained among all the membership functions. 
Thus, the ‘gauss’ type of membership function is the 
best function for approach IV. Fastest convergence 
is achieved using this approach. 

For manufacturing analytics problem, 
improvement of accuracy is the main objective. For 
manufacturing, curvilinear membership functions 
are found to yield better results compared to ‘tri’ 
and ‘trap’ membership functions. From the above 
discussion, it is understood that the membership 
functions varied with the change in the type of the 

Table 7: Approach IV

Type of 
error  

Type of membership functions 
TRI GBELL DSIG GAUSS PI PSIG TRAP 

MSE 0.254 0.164 0.2021 0.1522 0.2713 0.1671 0.2535 
HMSE 0.127 0.082 0.1010 0.0761 0.1356 0.0835 0.1267 
RMSE 0.504 0.405 0.4495 0.3901 0.5209 0.4087 0.5035 
ARB 0.089 0.079 0.0815 0.0731 0.0983 0.0803 0.0904 

 

Table 8: m and p values using approach IV

Table 9: Analysis of variance of different types of network using (r)

Slope and 
correlation 
coefficient 

Types of membership functions 
TRI GBELL DSIG GAUSS PI PSIG TRAP 

m 1.0013 
(45.0º) 

1.0012 
(45.0º) 

0.9965 
(44.9º) 

1.0032 
(45.1º) 

0.9932 
(44.8º) 

1.0053 
(45.2º) 

0.9847 
(44.6º) 

r 0.6679 0.8274 0.7568 0.8482 0.6388 0.8291 0.6628 
 

Source DF Adj. SS Adj. MS F-Value P-Value 
Type of network 3 0.2292 0.0764 1.76 0.181 

Error 24 1.0404 0.0433   
Total 27 1.2696    
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technique used for ANFIS. From the discussion it is 
unclear which type of technique combined with 
the type of membership function would yield the 
best results for prediction of the mean thickness. For 
analysing an ANOVA analysis is presented in Table 9. 
Table 9 shows the variance of different types of the 
network used in this study using the (r) values. The 
ANOVA analysis is carried for 95 percent confidence 
level. The p-value as seen in Table 9 is 0.181 which 
is greater than 0.05. The p-value suggests that the 
type of network have an insignificant effect on the 
prediction of the mean thickness of flow formed 
tubes. Also, it suggests that the networks have 
the same efficiency in the prediction of the mean 
thickness. 

5. Conclusion
 Backward metal flow forming process is a 

complex incremental forming process. Although 
it requires simple tooling for manufacturing of the 
tubes but understanding the deformation under the 
roller preform contact zone is difficult. There is very 
limited research on the relationship between the 
input and the output parameters such as the mean 
thickness of flow formed tubes. Thus, predicting 
the mean thickness for a set of input parameters is 
a difficult. This research aims to solve the problem 
with development of a soft computing model. 
With this model, easy and quick determination of 
the final dimension of flow formed tubes could 
be made for the input parameters. This technique 
would be very useful in the industries for controlling 
the quality of flow formed tubes. In this research, 
four different strategies of ANFIS technique is used 
along with seven different membership function. 
The techniques are used for prediction of mean 
thickness of the flow formed tubes. For the different 
techniques along with the membership functions 
the different measures of error performance are 
evaluated for the testing data. Based on this, the 
following conclusion could be drawn:
–  ANFIS is a powerful soft computing tool that could be used for 
determination of the final dimension of formed tubes by the complex 
incremental backward metal flow forming process. 
–  For manufacturing analytics where the accuracy of the formed 
component is the controllable feature. From the analysis it is stated 
that the curvilinear membership functions are highly acceptable for 
modelling of this forming process. The ‘psig’ membership function for 
approach III yielded the least error and highest correlation coefficient. 
The ‘gbell’ membership function yields the least error for approach II. 

The 'gauss' membership function yield the least error for approach I 
and IV respectively. 
–  Fast convergence is achieved by subtractive clustering with hybrid 
optimization technique in comparison to the other three approaches. 
–  The correlation coefficient r is close to unity for the 'psig' 
membership function for approach III. The second best is for 'gbell' 
membership function that have a value of 0.9483.  
–  Smooth curvilinear generates better results as compared to linear 
curve membership functions used in this research. 
–  For lower input parameters grid partition should be used rather 
than the subtractive clustering technique. 
–  An ANOVA analysis is performed to analyse significant contribution 
of each technique.  The p-value obtained for the research implies 
that all four approaches have the same efficiency in predicting the 
mean thickness. Thus, any of one of the approach could be used for 
developing a predictive model of flow forming process. 
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Annexure
Table 1: Training data

EXP.  
NO 

PRFORM 
IDENTIFICATION 

FEED-SPEED 
RATIO 

(mm/rev) 

INFEED 
(mm) 

AXIAL 
STAGGER 

(mm) 

Mean 
THICKNESS 

(mm) 
1 1H30010530095 0.5 3 9.5 4.5075 
2 1H30020630095 0.6 3 9.5 4.6375 
3 1H30030730095 0.7 3 9.5 4.6325 
4 1H30040830095 0.8 3 9.5 4.6125 
5 1H30050535095 0.5 3.5 9.5 3.97 
6 1H30060635095 0.6 3.5 9.5 4.0675 
7 1H30070735095 0.7 3.5 9.5 4.1125 
8 1H30080835095 0.8 3.5 9.5 4.1725 
9 1H30090540095 0.5 4 9.5 3.555 
10 1H30100640095 0.6 4 9.5 3.5975 
11 1H30110740095 0.7 4 9.5 3.665 
12 1H30120840095 0.8 4 9.5 3.5975 
13 1H30130545095 0.5 4.5 9.5 3.115 
14 1H30140645095 0.6 4.5 9.5 3.105 
15 1H30150745095 0.7 4.5 9.5 3.1525 
16 1H30160845095 0.8 4.5 9.5 3.2725 
17 1H30170530110 0.5 3 11 4.64 
18 1H30180630110 0.6 3 11 4.5625 
19 1H30190730110 0.7 3 11 4.5925 
20 1H30200830110 0.8 3 11 4.685 
21 1H30210535110 0.5 3.5 11 4.085 
22 1H30220635110 0.6 3.5 11 4.0825 
23 1H30230735110 0.7 3.5 11 4.155 
24 1H30240835110 0.8 3.5 11 4.1775 
25 1H30250540110 0.5 4 11 3.6475 
26 1H30260640110 0.6 4 11 3.71 
27 1H30270740110 0.7 4 11 3.6625 
28 1H30280840110 0.8 4 11 3.71 
29 1H30290545110 0.5 4.5 11 3.16 
30 1H30300645110 0.6 4.5 11 3.155 
31 1H30310745110 0.7 4.5 11 3.2075 
32 1H30320845110 0.8 4.5 11 3.275 
33 1H30330530125 0.5 3 12.5 4.5875 
34 1H30340630125 0.6 3 12.5 4.5575 
35 1H30350730125 0.7 3 12.5 4.67 
36 1H30360830125 0.8 3 12.5 4.655 
37 1H30370535125 0.5 3.5 12.5 4.1225 
38 1H30380635125 0.6 3.5 12.5 4.0975 
39 1H30390735125 0.7 3.5 12.5 4.1925 
40 1H30400835125 0.8 3.5 12.5 4.1725 
41 1H30410540125 0.5 4 12.5 3.63 
42 1H30420640125 0.6 4 12.5 3.61 
43 1H30430740125 0.7 4 12.5 3.74 
44 1H30440840125 0.8 4 12.5 3.7825 
45 1H30450545125 0.5 4.5 12.5 3.18 
46 1H30460645125 0.6 4.5 12.5 3.2175 
47 1H30470745125 0.7 4.5 12.5 3.215 
48 1H30480845125 0.8 4.5 12.5 3.3225 
49 1H30490530140 0.5 3 14 4.5525 
50 1H30500630140 0.6 3 14 4.64 
51 1H30510730140 0.7 3 14 4.66 
52 1H30520830140 0.8 3 14 4.535 
53 1H30530535140 0.5 3.5 14 4.075 
54 1H30540635140 0.6 3.5 14 4.0375 
55 1H30550735140 0.7 3.5 14 4.155 
56 1H30560835140 0.8 3.5 14 4.185 
57 1H30570540140 0.5 4 14 3.6225 
58 1H30580640140 0.6 4 14 4.6375 
59 1H30590740140 0.7 4 14 3.7375 
60 1H30600840140 0.8 4 14 3.7325 
61 1H30610545140 0.5 4.5 14 3.17 
62 1H30620645140 0.6 4.5 14 3.21 
63 1H30630745140 0.7 4.5 14 3.2475 
64 1H30640845140 0.8 4.5 14 3.31 
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Table 2. Test case data

Data 
Set No. 

Feed speed 
ratio 

Infeed Axial 
stagger 

Mean Thickness 
(Experimental) 

1. 0.55 3.7 12 3.459 
2. 0.75 4.2 12 3.394 
3. 0.65 3.2 10 4.36 
4. 0.72 3.4 10 4.138 
5. 0.65 3.2 12 4.368 
6. 0.4 2.8 9 4.56 
7. 0.9 2.5 9 5.088 
8. 0.45 4.8 15 2.825 

 


