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Abstract: This article has presented a technical concept for producing precisely desired Additive 
Manufactured (AM) metallic products using Artificial Intelligence (AI). Due to the stochastic 
nature of the metallic AM process, which causes a greater variance in product properties 
compared to traditional manufacturing processes, significant inaccuracies in metallurgical 
properties, as well as geometry, occur. The physics behind these phenomena are related to 
the melting process, bonding, cooling rate, shrinkage, support condition, part orientation. 
However, by controlling these phenomena, a wide range of product features can be achieved 
using the fabricating parameters. A variety of fabricating parameters are involved in the 
metal AM process, but an appropriate combination of these parameters for a given material 
is required to obtain an accurate and desired product. Zero defect product can be achieved 
by controlling these parameters by implementing Knowledge-Based System (KBS). A suitable 
combination of manufacturing parameters can be determined using mathematical tools with 
AI, considering the manufacturing time and cost. The knowledge required to integrate AM 
manufacturing characteristics and constraints into the design and fabricating process is beyond 
the capabilities of any single engineer. Concurrent Engineering enables the integration of design 
and manufacturing to enable trades based not only on product performance, but also on other 
criteria that are not easily evaluated, such as production capability and support. A decision 
support system or KBS that can guide manufacturing issues during the preliminary design 
process would be an invaluable tool for system designers. The main objective of this paper is to 
clearly describe the metal AM manufacturing process problem and show how to develop a KBS 
for manufacturing process determination.
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1. Introduction

Much of the recent research and development in computer science and 
information technology is leading to the automation of many elements of the Additive 
Manufacturing (AM) process and system design for metallic products [1,2]. Computer-
aided design and manufacturing (CAD-CAM), advanced AM methods, finite element 
analysis, manufacturing process modeling, and cost estimation/prediction are many 
areas that benefit from the latest technology [3–5]. New design environments are 
being postulated and implemented via tool development and enhancement that 
enable simultaneous design of products and processes [6–8]. The emerging field of 
multidisciplinary for design, simulation, and manufacturing optimization is providing 
technologies that are changing the way designers design [9]. In the medical, aerospace, 
and automotive fields, the design community is showing great interest in manufacturing 
many components using AM technology [10,11]. This article has addressed the 
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integration of design and manufacturing problems.
The problem of dimensions is one of the major 

problems with an AM product [12]. The product 
dimensions are only slightly different from those of 
the model CAD. Mingming et al. [13] observed that 
the film thickness change due to the high power 
process of selective laser melting. Takayuki et al. 
[14] have studied the volume fraction of pores that 
changes due to the change of scanning speeds 
and scanning space in Selective Laser Sintering 
process. Their length, diameter and height decrease 
significantly due to insufficient thermal conduction, 
material shrinkage and metal pool formation based 
on laser power, scanning speed, hatch spacing, 
and power layer thickness. The dimension tends to 
decrease after heat treatment of the AM product. 
Sometimes heat treatment of the AM product 
is required, but a decrease in dimension is not 
required. Therefore, a Knowledge-Based System 
(KBS) is required to control the dimension and 
volume shrinkage.

Neil et al. [15] have studied that the Selective 
Laser Melting (SLM) process produces large thermal 
gradients during rapid melting of metallic powdered 
feedstock. During solidification, thermally induced 
micro-cracks occur in certain alloys, which can be 
eliminated by process optimization. Olakanmi et 
al. [16] observed that in SLM process the bonding 
problem occurs between two adjacent layers. 
The bonding problem occurs due to laser power, 
scanning speed, material properties, layer thickness, 
etc. between two adjacent layers (both vertical and 
horizontal) during the formation of AM products 
[17,18]. The surface texture varies in different 
dimensions of the AM product [19]. Qiu et al. [20] 
have investigated that the evolution of the surface 
texture and porosity of Ti-6Al-4V samples produced 
by selective laser melting under different laser 
scanning speeds and powder layer thicknesses, and 
correlated with the melt flow behaviour by both 
experimental and modeling approaches. Minimising 
supports causes less heat conduction and improper 
weight distribution, both of which lead to bending 
and disorder of AM products [21–23]. On the other 
hand, maximising the supports leads to poor surface 
finish [24], more material loss, problems in removing 
the product from the support, and also more time 
consuming. So, it is necessary to design the support 
in such a way that these problems can be reduced, 
and an optimal design can be achieved. Gaard et al. 

[25] have observed that Direct Metal Laser Sintered 
Invar36-TiC composites led to the formation of 
microstructures with homogeneous distributions 
of TiC particles in the metal matrix. Changes in the 
chemical composition of the liquid Invar36 alloy led 
to the formation of spherical particles, changes in 
the phase composition during solidification and 
loss of the low CTE properties.

A few types of research have been conducted on 
the design and control of the mechanical properties 
of products manufactured by the Selective Laser 
Melting process employing Artificial Intelligence (AI). 
Rabemanantsoa et al. [26] presented an innovative 
AI approach to generating assembly sequences 
on a consortium of database emulating expert 
systems. Their methods involve only shape and 
feature recognition using a model-based computer-
aided design (CAD) analyser, data structure and data 
modeling, knowledge-based representation, and 
inference processing through a set of heuristics and 
rules. The main tool here was an object-oriented 
concept as a means of managing geometric data, 
topological data, and abstraction. Subashini et 
al [27] explored a non-invasive methodology for 
astrocytoma grading using image processing and 
artificial intelligence techniques.

However, the desired properties of SLM products 
also depend on tensile and compressive strength, 
fatigue strength, porosity, microcracks, bonding, 
defects, ductility, weight, surface morphology, 
chemical properties, and so on. These properties 
majorly depend on scanning speed [11], laser 
power/beam power [28], hatch spacing [29], 
scanning strategy [30], beam offset, layer thickness 
[31], properties of raw material [32], etc. To achieve 
those product characteristics, it is necessary to 
find out the suitable combination of the above 
dependent manufacturing factors with the help of 
KBS.

2. Product quality control 
Certain assumptions have been proposed 

regarding product modeling and structural analysis, 
as well as model optimization and manufacturing 
optimization, which are controlled by KBS. Here, 
KBS will integrate powder meteorology, mechanical 
properties of the metal produced by AM processes, 
process parameter hardware, simulation software 
Finite Element Method (FEM), CAD -CAM and 
other AIs. First, the materials from which the 
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product is to be made are pre-selected from a 
database of possible candidates before modeling 
and optimization. Second, dimensions will vary 
significantly for different materials depending on 
the model, performance requirements, and support 
conditions. Third, some of the process selection 
knowledge is abstracted to the functional level. In 
AM system, manufacturing processes are selected 
after modeling the part in CAD systems. The process 
selection is made using the finite element analysis 
of the model and the corresponding selection 
heuristics. This is the only way to make the CAB a 
viable tool for a designer who wants to reduce the 
error rate and design cycle time in the conceptual 
and preliminary design phase, when there is still 
some flexibility in the design parameters.

The desired measure could be obtained by 
applying error correction through mathematical 
formulas in the model CAD. The applications of 
the mathematical formulas could be different for 
different types of dimensions and volumes. These 
applications could also depend on the orientation 
of the model in the AM chamber. The second option 
is to control the laser/beam power, scanning speed, 
scanning type, and layer thickness using KBS so that 
we can obtain the desired products [33]. It could 
also be possible to control the metal bath and 
thermal shrinkage by increasing or decreasing the 
thermal conductivity [12], which can be controlled 
by increasing or decreasing the support conditions 
to obtain the desired dimensions [24].

It could be possible that we use KBS to control 
the metallurgical, mechanical and chemical 
properties of AM products by varying the laser 
power, scanning speed, powder layer thickness 
in the given powder raw materials [34][35]. It 
might also be possible in obtaining the desired 
mechanical and chemical properties by combining 
the control of rapid fabrication and post-processing 
of the product. The material properties of AM 
products need to be verified by metallurgical 
tools and finite element analysis. To reduce the 
microcracks, we should vary the support conditions 
(to control the thermal stress and support strength), 
the laser parameters, the powder layer thickness, 
and the production chamber environment using 
KBS. It is needed to determine the perfect support 
conditions (support density, hatch type, outline 
support, etc.) to minimize the supports due to 
the orientation of the product model. To reduce 

the internal support in the model, it is required to 
place the model in perfect orientation. The support 
conditions for all other conditions, such as: thermal 
conduction, dimension, micro-crack, bending, 
overhanging position, expansion, timing, support 
removal, surface conditions, etc. To achieve the 
desired bonding state between two adjacent layers 
(both vertical and horizontal) during the formation 
of AM products, the laser parameters, powder layer 
thickness and production chamber environment 
should be varied. To obtain the desired surface 
finish, it is needed to vary the laser parameters for 
surface preparation, the thickness of the powder 
layer, and the orientation of the model. The surface 
finish at the interface of supports can be modified 
by changing the support conditions [19].

There are several important topics that have 
related to the development of knowledge and rule 
bases. Powder meteorology, mechanical properties 
of the metal produced by AM processes, hardware 
of the process parameters, CAD-CAM and FEM 
simulation knowledge are integrated here. Much 
of the data needed to build the knowledge bases 
will be brought together. In order to collect the 
necessary data, an extensive knowledge acquisition 
process is required.

Khokhar et al. [36] have surveyed a 
comprehensive review of the application of signal 
processing and artificial intelligence techniques 
in power quality disturbance classification. The 
directions of AI research and the main features of 
KBS market phases through a survey of KBS tools and 
applications in the technical domain. The KBS can 
be developed using this research method and will 
be used within an integrated design environment 
along with existing tools, which can demonstrate its 
functionality as a design tool. The system will enable 
engineers to design the desired features at the 
lowest cost that satisfies all mechanical properties. 
The illuminated concept in this paper provides an 
overview of the development of the knowledge and 
rule base required to build the KBS. The interfaces 
and relationships to CAD packages, external 
synthesis and analysis codes, and links to cost 
estimation software and methods are developed. 
The system can be integrated with existing tools 
and desired artificial intelligence, as Fig. 1 shows. 
Several existing tools and codes are used within the 
system to perform the desired product and process 
modeling and design trades. The other tools in Fig. 1 
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that are currently used for product design analyses 
can be used.

Figure 1: Integrated Design Environment

Based on the above problematic characteristics, 
we need to evaluate a proactive approach in 
knowledge-based manufacturing planning systems 
that can assume that the manufacturing planning 
system will play an active role in meeting the 
objectives based on the requirements defined by the 
manufacturing system management. For example, 
(see in Fig. 2), the manufacturing engineer will try to 
keep the processes that fall within his competence 
within the predefined values for a selected indicator. 
Here, the knowledge-based system must take into 
account the current and expected evolution of CAD 
modeling [37] and manufacturing mechanisms 
and processes [38]. The result of this analysis and 
the subsequent transformation of the indicators 
would then decide the ability of the manufacturing 
processes to deliver the product at the required 
quality, cost and time based on the proactively 
created plan. Based on the status of the evolution 
of the monitored indicators, the AM machine then 
evaluates its ability to manufacture and deliver the 
product within the required time frame.

Fig. 3 shows a Knowledge-Based System Planning 
Process for AM that describes the transformation 
of data into indicators that represent the state 
of the manufacturing system. The evaluation of 
the implementation of the plan based on the 
manufactured product is the result of each phase, 
and it clearly defines the suitability or unsuitability 
of the decision taken. When modeling techniques 
are used, the term allows defining upper and lower 
bounds for each predictor, as well as defining an 
"alarm" for a possible decision error. Finding an 
appropriate setting of the indicators and searching 
for known and less known causes and correlations 
for successful production planning in this concept 
ensures the top module, which searches and 
recommends the best plan variants based on the 
historical and current values of the indicators. The 

Figure 2: A Knowledge-Based system planning for AM process.
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best variant is characterized by the required values 
of selected parameters, which are adjusted by the 
production planner.

The manufacturer will establish a set of 
indicators to monitor the performance of each 
process. The existing system of indicators and their 
influencing parameters must be brought into a 
suitable structure for the purpose of further use. The 
present concept provides for a group of selected 
indicators, which will be constantly updated by 
the data warehouse. The exact number of selected 
indicators depends on the manufacturer. Stochastic 
algorithms are to be used in the creation of the 
process optimization. Occurring situations are 
therefore analysed using data mining methods such 
as Spearman's correlation method and decision 
tree learning. The resulting knowledge about the 
behaviour of indicators in a given situation is input 
into a knowledge-based system for further use. Data 
mining techniques can reveal seemingly hidden 
correlations that can have a great impact on the final 
decision. At the same time, they can recommend 
which exact values should be set as warning limits, 
i.e., when the values of the monitored indicators are 
already insufficient to fulfil the set task.

The training data is recursively partitioned with 
a splitting attribute until all records in the partition 
belong to the same class [39]. In this case, a working 
model of the device behaviour is constructed based 
on historical indicator values. This model would then 

Figure 3: System of transformation of indicators.

be used to identify the current state based on the 
attributes used. If the current state is unfavourable 
or the thresholds of the target indicator have been 
reached, the task of the system is to perform a shift of 
the independent variables so that the current value 
falls through a more favourable leaf of the decision 
tree, proactively preventing further deterioration of 
the target indicator. This technique is illustrated in 
Fig. 4. It is necessary to reprocess the decision tree 
model over time as different circumstances occur 
to maintain its accuracy. The event that triggers 
the reprocessing of the mining model can either 
be triggered by the calculation of the actual value 
when the set thresholds are exceeded, or it can be 
triggered at regular intervals.

In addition, the article has discussed the process 
of AM that allows for the creation and control 
of novel geometry, material, computation, and 
manufacturing methods, enabling designs that are 
currently not feasible with current technology. Fig. 
6 depicts the problems and solution directions in 
four research areas that should be pursued: Design 
of (1) geometry, (2) material, fabrication of (3) 
computational tools, and (4) fabrication methods 
proposed for the AM method. This discussion not 
only assist to the engineers and researcher for 
further improving the AM product but also help 
to obtain knowledge about the application in 
the other technologies such as binder jetting and 
deformation during sintering.
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Figure 4: Data mining techniques applied to indicators.

Figure 5: Knowledge-Based system building process.

Figure 6: The problems and the fields of solution directions.

3. Conclusions 
The dependence of AM techniques on related 

technologies such as materials modeling, design 
software, computers, and process design presents 

challenges for both applied and basic research; 
here we describe a possible solution to the current 
problems.

Artificial Intelligence technology is to be 
developed for use in computer-aided design 
and manufacturing. A Knowledge-Based system 
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to be developed for use in selecting laser melt 
manufacturing processes for desired complex 
designs for medical, aerospace, and automotive 
applications.
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