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Abstract: This paper introduces an approximation method developed for calculating stress intensity 
factor for pressure vessels in nuclear power plants. The method is based on weight functions, 
which has high accuracy among the methods based on crack-free stress calculations. Besides 
it has the advantage over the weight functions method, it corresponds to the approximation 
methods can be found in nuclear codes like ASME BPVC [1]. Numerical test calculations are 
performed to experimentally show the differences of several possible approximation methods. 
The results show the weighted least squares method using stress intensity factor weight 
functions, do have the above-mentioned advantages.
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1. Introduction

Stress intensity factor calculations in applied fracture mechanical analyses for 
nuclear power plants are mostly based on the polynomial regression of the crack-free 
stress field, postulating planar semi-elliptical surface cracks. The importance of such 
calculations is shown by the fact, that the scope of fracture mechanics analyses for 
power plant safety reports and aging management generally covers:

»  Reactor pressure vessel brittle fracture, crack propagation and PTS (Pressurized Thermal Shock) analysis;
»  Brittle fracture and crack propagation analyses of main circulation pipes;
»  Brittle fracture and crack propagation analyses of the pressurizer vessel;
»  Brittle fracture and crack propagation analyses of other primary circuit equipment and pipelines.

2. Summary of generally used methods
2.1. Methods based on polynomial regression

Nuclear authorities usually expect calculation procedures set out in nuclear codes 
for the above listed analysis. These procedures are most commonly based on the 
following scheme (for example: [1] Appendix A-3000):

Polynomial regression of the crack opening stress calculated by the FEM analyses:
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where x is the coordinate normal to the vessel’s inner surface, a is the crack depth, 
FEMσ  is the distribution of the stress component normal to the crack plane, calculated 

by the Finite Element Model (FEM), Aσ  is the polynomial regression of FEMσ , with the 
regression coefficients: A

0
, A

1
, A

2
 and A

3
. Determining regression coefficients might be 

performed for a given FEMσ  function, although the code does not specify its method.
Stress intensity factor (K

I
) is calculated using the determined regression coefficients:
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where a is crack size; l is crack surface length, A
p
 is 

internal pressure the G
0
, G

1
, G

2
, G

3
 coefficients are 

determined using the tables in the code, and R
0
 is 

a coefficient containing the crack shape correction 
factor and the crack tip plastic zone correction 
factor.

Main characteristics of the above method:
»  The curve regression method is not specified by the code, and 
the base polynomials of the regression - which are the 

ix
a

 
 
  , i = 

0, 1, 2, 3 terms in this case - are not numerically optimized. 
These follows, that significant difference of the result might occur 
using in two different regressions for the same FEM results.
»  It is not suitable for jump discontinuities of the stress function, 
or for any other characteristics which cannot be approximated 
sufficiently with polynomial regression. Such anomalies are 
caused, for example by stresses due to different thermal expansion 
coefficient of the cladding or residual stresses according to nuclear 
codes, etc.
»  The coefficients might contain the conservatism of this 
method. This conservatism might not be neglected by changing 
to another similar method, in a case when this method is adopted 
in a regulation or a guideline by the authority, or it is a part of the 
basic nuclear standard of the power plant, or some form of other 
official regulations.

2.2. Specific weight functions
Another way to calculate the stress intensity 

factor is the method of weight functions, which is – 
with collected coefficients – written in the following 
form:

not be directly accepted by the nuclear authorities. 
However, weight functions can also be generated 
directly from the K

I
 tables ([2] pp 392-394 9.1.3. 

Weight Functions for Arbitrary Loading), for example:

( ) ( )
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w VEM
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where R
w
 is a coefficient calculated from the 

given crack configuration (including crack shape 
correction factor and the crack tip plastic zone 
correction factor) and w(x) is the weight function. 
The applicable weight function is determined for 
example the following way ([2] pp 56-57. – 2.6.5 
Weight Functions):
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where E is Young's modulus, K
I
 is a known stress 

intensity factor, u
y
(x) is the displacement of the 

crack face normal to crack plane at a point with 
x-coordinate along the elliptical cracks a-axis. 

The main disadvantage of this method is, that 
it is not possible to use the tabulated coefficients 
from the standard, so it possibly does not include 
its required conservatism, which means it is might 
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 coefficients are calculated 

from the G
0
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1
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3
 values, which are the same 

coefficients as in eq.2. (Q is a constant similar to R
w
) 
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Generally speaking, weight functions have the 
characteristic, they have a singularity at the crack tip:

( ) if .w x x a→∞ → ( )9

This means using the weight function method 
leads to improper integral evaluation, which 
requires higher level numerical calculations. Further 
than this, if weight function is based on tabulated 
constants, the coefficients have to be recalculated 
for all different crack parameters.
2.3. General weight function

There is a weight function, applied several times 
for NPPs to analyse cracks on the inner surface of 
cylindrical pressure vessels, which is independent 
from the crack parameters [3]:
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where s is wall thickness.

3. Polynomial regression using weight function
In the following a newly developed LSM (Least-

Squares Method) based method is presented, which 
can be used to preserve the conservatisms of the 
tabulated coefficients declared in the standard, 
but also resolve their limitations on polynomial 
regression of the stress function.
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3.1. Least-Squares Method (LSM) in polynomial regression
The basis of the method is that the A

i
 parameters 

of the curve fitting in Equation (1) are determined 
by the integral formula using the LSM. Universally 
least squares regression might be presented in the 
following way:

»  The stress function ( )VEM xσ , is usually specified by data 
points:

»  Calculating the A
j
 parameters by solving the following 

equation system, leads the residual is minimized:

( )  0,  ...,  y i n= ( )11

however, using the finite element method the stress 
function might be a real space function (might include jump 
discontinuities). The LSM is applicable for both two cases, if stress 
function is represented by data points or by a real space function.
»  Assuming linear space, the regression curve is written in the 
following form:
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where ( )j xα  are base functions, for example:

( )
j
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( )13

and A
j
 is the matching parameter to be calculated, and the A

j 

parameters are collected in a parameter vector: A.
»  The residual function of the approximation:

( ) ( ) ( ),VEM Ar x x x Aσ σ= − ( )14

»  According to the specific LSM method, a norm is specified for 
a function over the crack. The applied norm for data points is 
usually the root sum of squares:
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for functions the integral norm might be used:
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»  The best regression in least squares meaning is the A parameter 
vector, where the norm of the residual is minimal:

( ) minr x → ( )17

»  The scalar product for data point is usually specified as the 
following:

( ) ( ) ( ) ( )
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=
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for functions it is written in integral form:
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where M  is the stiffness matrix of the base functions:

, 1,  ..., , 1,  ...,,ij i j i m j mM α α = == ( )21

B might be interpreted as the projection of the stress function on 
the base functions:

, 1,  ,, ...VEM
j j j mB α σ == ( )22

3.2. Weight functions in polynomial regression
There is no effect on LSM’s basic characteristics 

if integrands in the above integrals multiplied by a 
properly selected weight function (WLSM - Weighted 
Lest Squares Method). In this case (considering w(x) 

as the weight function) the integral norm is written 
in the following form:
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Obviously, weight functions have large effect 
on calculation results as it is showed in the example 
calculations. If the fracture mechanical weight 
function (according to (3)) is used at the WLSM 
method as a weight function, we get the best 
regression for the stress intensity factor in least 
squares meaning.

Using WLSM for the zero-degree (constant) 
regression means (using eq. (21) and (22)):
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So eq. (20) leads to the following:
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This means A
0
 is calculated as the following:
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The integral of the weight function over the 
crack depth is considered constant in this case, since 
it contains only crack configuration dependent 
parameters:

thickness: t
cl
 = 9 mm; 

base material thickness: t
b
 = 140 mm (t = t

cl 

+ t
b
);

»  Crack characteristics: 
axial, semi-elliptical surface cracks, depth:  
a = 16, 23 and 30 mm; crack shape factor:  
a / c = 1/3.

Test cases are set to:
»  highlight the typical errors of the basic polynomial regressions;
»  include typical stress fields from the practical PTS calculations:

–– stress discontinuity caused by the different heat-expansion 
coefficient of cladding and base metal;

–– residual stress in welds from the regulations;
–– critical case from a real-world calculation;

»  parameters of the stress distribution polynomials are a set, 
so that calculations with the Westergaard method (number 6.) 
using a crack with a depth of a=23 mm would give the same 
results on the stress intensity factor for most cases;
According to the conditions above the following 

stress distribution functions are used:
a)	 Constant stress distribution: sFEM(x)=55.3 MPa
b)	 1st order stress distribution: sFEM(x)=92.9-383.77∙(x/t) 

MPa
c)	 2nd order stress distribution: sFEM(x)=92.9-3098.49∙(x/t)2 

MPa
d)	 3rd order stress distribution: sFEM(x)=92.9-7806.33∙(x/

t)2+34888.75∙(x/t)3
e)	 Constant stress distribution with discontinuity at the 

interface of cladding (modelling the different heat-
expansion coefficient of cladding and base metal):
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leads:

This means, the two calculation results will be 
characteristically identical, the difference between 
them are in the multiplicative constants (including 
any other conservatisms in the case of the nuclear 
code). Which means using the above regression, 
leads to (proportionally) the same errors as using 
the weight function method for the same stress 
field. Using the conventional LSM approach, we 
might get characteristically different results, like it is 
shown at the calculation examples. Considered from 
the above equations, the constant of the weight 
function method does not affect the stress-curve 
regression, so the following assumption might be 
used:

1wR = ( )33

3.3. Test calculations
The PTSLab computer code – developed by 

the author – was used for calculating the following 
examples, which show the practical use of the 
above described methods. PTSLab earlier was used 
by VEIKI E+ Ltd. to perform parametric calculations 
supporting the development of the PTS (No. 3.18) 
regulatory guide and also for checking the results 
of the PTS calculations submitted to the Hungarian 
Atomic Energy Authority by Paks NPP as a part of the 
licence renewal application of the WWER440 units 
[4].

Test calculations are based on the following 
main parameters and usual crack configurations of 
WWER 440/213 units:

»  Main dimensions of the pressurized vessel:
inner diameter: d

0
 = 3542 mm; cladding 

( )
224,4, / 0,06

3,57
FEM if x t

x
otherwise

σ
<

=  −

f )	 Residual stress (according to Hungarian regulations):

( )
60, / 0,06

60cos 2
FEM

cl

b

if x t

x x t otherwise
t

σ
π

<


 = −
 
 

g)	 Stress distribution from the PTS analysis, during an 
accident (LBLOCA);

4. Results and Discussion
The calculation results are shown in the following 

figures. Based on the results, these conclusions are 
made:

»  Methods rely on fixed base point regressions correlate well 
with the other results as long as the polynomial degree of the 
stress distribution function is not greater than the degree of the 
method (for linear approximation, these are the cases titled a., 
b.). Deviations with larger crack sizes are greater. The difference is 
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Id Short name Main characteristics Notes

Methods based on regression

1. ASME linear 1st order linear regression on fixed base 
points, using tabular coefficients

Source: [1] Appendix A-3000

2. ASME  
polynomial

3rd order regression on fixed base 
points, using tabular coefficients

Source: [1] Appendix A-3000

3. CEA 1st and 3rd order combined regression 
on fixed base points, using tabular 
coefficients

Method is developed by the French Alternative Energies 
and Atomic Energy Commission (CEA) [5]. Based on FEM 
calculations, taking account the discontinuity of the stress 
function at the cladding. 

4. ASME LSM 3rd order regression based on LSM, 
using tabular coefficients

Method is described above in subsection 2.1. Source of 
tabular data: [1] Appendix A-3000

Weight function methods

5. ASME WF Weight functions calculated from 1st 
order regressions tabular coefficients.

The weight function from eq (5) is used. (Source: [2] pp 
392-394)

6. Westergaard General weight function for semi-
elliptical surface cracks.

Source: [3]. The method is using the weight function 
shown above in eq. (10).

Regression using weight function

7. ASME WLSM 
tabular

Polynomial regression using weight 
functions calculated from the 1st order 
regressions tabular coefficients.

Method is described above in subsection 2.1. The weight 
function from eq (5) is used for the integration.

8. ASME WLSM 
Westergaard

Polynomial regression using 
Westergaard weight functions

Method is described above in subsection 2.1. The weight 
function from eq (10) is used for the integration.

Table 1: List of applied methods

somewhat reduced when using the LSM method (without weight 
function).
»  An exception to the above is the CEA method, which in 
all cases contains less conservatism than the others, besides 
this the difference compared to the weight function methods 
does not increase even if there is a discontinuity of the stress 
distribution function at the cladding interface (case e.). However, 
the difference is more significant for the residual stress (case f.), 
where the approximation is no longer capable to accommodate 
to the stress distribution function. Concluding the above, the CEA 
method is quite well applicable in general, but its conservatism 
does not reach the level of ASME’s.
»  Methods based on the weight functions give very similar 
results in a consistent manner. For methods based on the ASME 
approximation, this consistency is particularly significant 
(methods 7., 8.), regardless of the used weight function. 
»  PTS transient:

–  Methods rely on fixed point regression has a different 
character in the stress intensity values over time, compared to the 
other results. The difference is the most significant for the ASME 
method using linear approximation. Although the results using 
the CEA method is similar in characteristics as the results with the 
weight function methods, it includes much less conservatism.

–– The computationally intensive methods give very close results 

to each-other (5., 6., 7., 8.).

4. Conclusions 
Based on the above presented characteristics 

and calculation results of the developed method, 
it can be concluded the method corresponds to 
the approximation methods of the nuclear code, 
generally accepted by the authorities, as the 
interpolation coefficients are calculated and also the 
approximation itself might be presented graphically. 
In addition, it has a consistent, similar characteristic 
to the general weight function based methods, 
which means it produces acceptable results, even 
for complex stress distributions. Although one 
feature of the method is that a well-implemented 
numerical calculation is needed which means 
higher computational requirements, but these 
are significantly lower than the computational 
requirements of analyses of a directly modelled 
cracks using FEM.
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Figure 1: Stress intensity calculation results for single stress distribution test (cases a-f
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Figure 2: Stress intensity results for the LBLOCA test calculations (case g)
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