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Abstract: This paper deals with modal analysis through 3 different approaches, namely: analytically, 
numerically and experimentally. The investigated mechanical structure in this case will be a 
beam, which is characterized by three parameters, one of which is significantly larger than the 
other two. The beam is a structural element designed to transmit forces, mostly external ones. 
Modal analysis of the beam will be performed in 2 versions of its fixation, as a free structure and 
a one-sided embedded fixation. Modal parameters obtained by 3 different approaches will be 
compared with each other, which will determine whether the method of calculation was chosen 
correctly or whether the experiment was performed correctly.
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1. Introduction to modal analysis

Modal analysis as a scientific discipline belongs to the highly extensive methods. 
We use it to describe the dynamic behaviour of mechanical structures by decomposing 
a complex oscillating action (Figure 1) into partial actions, which are characterized 
by modal parameters, namely natural frequency, natural shape of oscillations and 
damping. Thanks to these parameters, we can assume the properties and dynamic 
behaviour of the mechanical structure [1-3].

We can use modal analysis in 2 different levels, in the theoretical and practical 
level. In the theoretical level as a calculation method and in the practical level by direct 
implementation of experimental measurement of a specific mechanical structure, the 
so-called modal test [1-3].

In technical practice, the comparison of the results of modal parameters obtained 
by the FEM method or another theoretical method with the results obtained 
experimentally is used [4].

The natural frequencies obtained by the modal analysis help us to determine 
the critical operating states that must not occur in the mechanical system. This is a 
dangerous question of the resonance of the system, which arises when the natural 
frequencies coincide with the frequencies of the excitation forces. The principle 
is therefore to combine two oscillations with the same frequencies, resulting in a 
resonant frequency (Figure 2). With this frequency match, even small excitation forces 
elicit a high response. Resonance in the mechanical system causes increased noise and 
significant vibration, resulting in reduced life and damage to the system [5-7].

A simple case of resonance can be seen in this graph. Frequency fB indicates the 
resonant frequency. It is clear from the figure that at a lower frequency fA, but also at a 
higher frequency fC, the amplitude is significantly lower than at the resonant frequency 
fB, where the amplitude we do not even see [5-7].

The proper shapes of the oscillations obtained by modal analysis help us also to 
determine the places of maximum deformation. Thanks to this, it is possible to implement 
several system optimizations, such as geometric optimization, material optimization, 
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shape optimization or addition of supporting parts, 
etc. The purpose of this optimization is to eliminate 
dangerous oscillations [8].

According to the authors [9-11], Figure 3 shows 
how the optimization cycle proceeds through the 
individual phases from the input, which is our CAD 
model of the part, to the output, which represents 
the final shape of the part after optimization, not 
only in modal analysis, but also in general.

In technical practice, the comparison of the 
results of modal parameters obtained by the FEM 
method or another theoretical method with the 
results obtained experimentally is then used. There 
are several reasons for using both areas [12-13]:

–  correction of the theoretical model in such a way that it better 
corresponds to the actual measured values,
–  verification of theoretical results with experimentally obtained 
data before further calculations,
–  correlation of theoretical and experimental data to determine 
discrepancies between the two sets

2. Bending stress analysis on beam  
First, it is necessary to define several valid 

conditions and relationships, which were defined in 
publication by the authors [8]:
–  Moment of inertia and shear deformation are neglected.
–  The cross section of beam A(x) is constant along its entire length.
–  EJ(x) is constant and the beam is symmetrical along the neutral 
axis.
–  No axial forces are present in the longitudinal direction.

The considered beam is bend in the transverse 
direction with a length 1 and a rectangular cross-
section A(x) as shown in Figure 4. The flexural 
stiffness of the beam is EJ(x), where E is the Young's 
modulus and J(x) is the quadratic moment of the 
cross section around the y-axis [8].

Figure 1: Modal decomposition

Figure 2: A simple case of resonance.

Figure 4: Scheme of considered beam bending stress.

Figure 3: Optimization cycle
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From the Euler-Bernoulli theory of beams, the 
relation for the bending moment M(x, t) and the 
deflection in the direction of the z-axis w(x, t) is 
applied [8]:

results are shown in Table 2.
Table 1: Values of the coefficient βn

βn for free structure βn for one-sided embedded fixation

β1 4,730041 1,875104

β2 7,853205 4,694091

β3 10,995608 7,854757

β4 14,137165 10,995541

Table 2: Results of natural frequency values for both types of 
boundary condition using analytical calculation.

Natural frequency (Hz) Free structure One-sided embedded fixation

ω1 267,5479 42,0458

ω2 737,50622 263,4973

ω3 1445,8098 737,7992

ω4 2389,9968 1445,7922

( ) ( ) ( ) 2, . , /M x t EJ x w x t x= ∂ ∂ ( )1

By successive modifications of Equation 1, we 
finally obtain a relation for the analytical calculation 
of natural frequencies in the form [8]:

( )1/22 /EJ Aω β ρ= ( )2

where b is a coefficient determined from the 
boundary conditions of the equation and r is bulk 
density or density of the material.

3. Analytical calculation
For the analytical calculation to be performed 

correctly, it is necessary to consider part geometry, 
material type (isotropic, anisotropic), variable 
plate thickness, applied loads (forces, moments), 
boundary conditions (F - "FREE", C - " CLAMPED ", SS 
-" SIMPLY SUPPORTED ").

In our case, the following characteristics were 
used:
–  ρ = 7832 kg/m3

–  l = 400 mm
–  h = 40 mm
–  b = 8 mm
–  E = 210 GPa
–  μ = 0,3

We write the boundary conditions for our type 
of problem as follows: F-F-F-F for free boundary 
condition and C-F-F-F for one-sided embedded 
fixation.

Based on the knowledge of the relations from 
the previous chapter, it is possible to calculate the 
natural frequencies of the mechanical structure 
analytically using the relation (2). However, it is still 
necessary to define the values of the coefficient 
b. The values of the coefficient b, similarly to the 
integration constants, are determined from the 
boundary conditions of the beam. Table 1 lists the 
first four values of bn for the basic cases of beam 
mounting loosely at both ends and with one end 
free and the other inverted [14].

By successively substituting the values of 
geometric characteristics and the values of the 
coefficient βn into equation (2), the first four natural 
frequencies for a loosely placed and unilaterally 
embedded beam were analytically calculated. The 

4. Experimental measurement

The measurement procedure in the experimental 
part of the modal analysis can be divided into the 
following stages [14]:

1. Pre-preparation of experimental measurement
a) Creation of a network of measuring points directly on the 

analysed component
b) Determination of excitation and measurement point.
c) Appropriately chosen placement of the measured structure, 

according to the specified boundary conditions.
d) Selection of excitation method (dynamic exciter or modal 

hammer).
e) Selection of force and response sensors (acceleration, velocity 

and deflection). It is often advisable to choose contactless sensors.
f ) Analyzer configuration for signal processing.
g) Calibration of sensors and checking the settings of the 

measuring technique.
2. Measurement of modal data
a) Application of the response sensor (or adjustment of the laser 

vibrometer beam) to the measuring point.
b) Excitation of the structure by the selected type of exciter.
c) Recording of sensed signals at measuring / excitation points.
3. Analysis of measured data
a) Evaluation of measured results. Subsequent comparison 

with values obtained through calculation procedures (analytical / 
numerical).

b) Possibility to extend the experiment by harmonic analysis, 
while creating an amplitude-frequency characteristic.

The first step of the measurement was 
to assemble the measuring apparatus. The 
measurement was performed on two beams, which 
were identical in their geometric characteristics, only 
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the method of their fixation was different. It is for 
this reason that the whole measurement procedure 
had to be repeated twice [15-25].

The specific method of their fastening is shown 
in Figure 5, namely:

1. In the first case, the beam is placed as F-F-F-F for free boundary 
condition (right arrow)

2. In the second case, the beam is placed as C-F-F-F for one-sided 
embedded fixation. (left arrow)

corresponding to the real system. On the created 
model, we defined the points at which the beam 
was excited by a modal hammer. Subsequently, we 
determined the point at which the response will 
be measured via the coordinates [0.4; 3.75] and we 
defined the degrees of freedom. The z+ direction 
(point 19) is the measurement direction and the z- 
(points 1-18) is the excitation direction.

( )a

( )b

Figure 5: (a) Types of fixation of the measured beam. (b) 
Measurement system configuration.

A network of measuring points was then defined 
on the beams (1.). Excitation using a modal hammer 
(2.) was chosen as the excitation method. In the next 
step, a reflective element was applied to the beam, 
to which a laser beam generated by a Polytec PDV 
100 (3.) vibrometer was directed. With the help of 
the reflective element, it is possible to monitor the 
magnitude of the deflection.

We connected the measuring system according 
to the instructions, checked the settings of the 
measuring technology given by the manufacturer 
and calibrated the sensor. Subsequently, according 
to Figure 6, the entire measuring system was 
configured in the Pulse software.

After connecting the measuring system, we 
created a geometric model in the Pulse software 

( )a

( )b

( )c

Figure 6: (a) Configuration of the system. (b) Measurement 
range. (c) Program weighing
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Using a modal hammer, we brought the 
excitation to predefined points, while obtaining 
the response of such a system. By analysing the 
experimentally measured data, we obtained the 
modal parameters of the system, which in our case 
represented the natural frequencies and their own 
natural oscillation shapes.

The following figures in Table 3 show the first 
four mode shapes with the respective natural 
frequencies for a free boundary condition (variant A) 
and for a one-sided embedded fixation (variant B).

5. Numerical analysis
The finite element method in the NX Nastran 

calculation program was used in the numerical 
analysis. First, a model of the beam with the specified 
dimensions and characteristics from Chapter 3 was 
created as CAD model. The model created in this 
way was then covered by a finite element mesh 
with an element size of 4 mm (Figure 7).

In the next step, the numerical calculation of 
modal properties called frequency analysis was 

started (in NX Nastran, this solver is referred to as 
SOL 103 Real Eigenvalues). The values of natural 
frequencies were obtained by numerical calculation 
in the form of a simple table. We then transferred 
the values obtained in this way to the calculation 
tree and started the calculation again. With this step, 
we also obtained a graphical display and animation 
of the beam's own vibration shapes.

The following figures in Table 4 show the first 
four mode shapes with the respective natural 
frequencies for a free boundary condition (variant A) 

Table 3: Results of experimental modal analysis

 1.mode 2.mode 3.mode 4.mode 

A 

    
ω1 = 265,91236 Hz ω2 = 731,29338 Hz ω3 = 1430,00562 Hz ω4 = 1497,58102 Hz 

B 

    
ω1 = 47,15717 Hz ω2 = 219,79543 Hz ω3 = 733,39265 Hz ω4 = 1329,92324 Hz 

 
Table 4: Results of numerical modal analysis

 1.mode 2.mode 3.mode 4.mode 

A 

    
ω1 = 263,692 Hz ω2 = 725,561 Hz ω3 = 1419,148 Hz ω4 = 2331,261 Hz 

B 

    
ω1 = 41,708 Hz ω2 = 260,82 Hz ω3 = 728,675 Hz ω4 = 1423,995 Hz 

 

Figure 7: Finite element mesh on a modelled beam.
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and for a one-sided embedded fixation (variant B).

4. Conclusions 
In this paper, a modal analysis of the beam as 

one of the most used structural elements was 
performed. For two types of fixation - free boundary 
condition and one-sided embedded fixation - 
modal parameters were experimentally obtained 
in the form of a graphical representation of the 
natural shapes of the beam oscillations and their 
corresponding values of natural frequencies.

To verify the experimentally measured data, 
a numerical analysis was performed in the NX 
program, where the proper shapes and frequencies 
of the beam oscillation were again obtained. At the 
same time, these data were supplemented by an 
analytical calculation of natural frequencies, which 
was performed based on derived relationships and 
available experimentally determined constants for 
both types of storage.

The summary results of the analytical, 
experimental and numerical calculation are given in 
Table 5 for a free boundary condition (variant A) and 
for a one-sided embedded fixation (variant B).

Finally, all data were compared, and it can be 
stated that the differences between the individual 
values are generally greater with one-sided entry of 
the beam.

The reason for this difference was the 
impossibility of realizing such a perfect tight coupling 
in experimental measurements, with which the 
software works in numerical calculation. As a result, 
the natural frequency values obtained experimentally 
and numerically differ at higher natural frequencies, 
but the difference is always within the error limits 
caused by the measurement. Therefore, we can say 
that the performed measurement was correct.

Acknowledgments
The paper was created as part of the projects KEGA 027TUKE-
4/2020 and VEGA 1/0290/18.

References and Notes
1.	 Bilošová, A (2012). Applied mechanic as part of a team of 

designers and developers (in Czech). Technical university of 

Ostrava, Ostrava.

2.	 Bocko, J, Segľa, Š, Huňady, R (2016). Vibration of mechanical 

systems (in Slovak). Faculty of Mechanical Engineering, 

Technical University of Košice, Košice.

3.	 Delyová, I, Frankovský, P, Bocko, J, Trebuňa, P, Živčák, 

J, Schürger, B, Janigová, S (2021). Sizing and Topology 

Optimization of Trusses Using Genetic Algorithm. Materials, 

vol.14, no.4, pp. 715. 

4.	 Kirthana, S, Nizamudin, N (2018). Finite Element Analysis 

and Topology Optimization of Engine Mounting Bracket. 

Mechanical Structures, vol. 13, no. 4, pp. 123-125.

5.	 Krishna, G, Tarak, D, Burman, R (2019). Numerical and 

experimental comparative study of Aluminium and hybrid 

mounting interfaces of launch vehicle avionics for weight 

reduction. Kanchan Bagh, Hyderabad.

6.	 Liang, L (2021). A user-defined element for dynamic analysis 

of saturated porous media in ABAQUS. Computers and 

Geotechnics, vol. 5, no. 8, pp. 49-54.

7.	 Li, Z, Zhang, C (2021). Design and parameter optimization 

of contactless vertical inductive angle sensor. Vacuum, vol. 

169, no.23, pp. 141-156.

8.	 Vo, D, Borkovic, A (2020). Dynamic multi-patch isogeometric 

analysis of planar Euler–Bernoulli beams. Computer 

Methods in Applied Mechanics and Engineering, vol. 372, 

no.3, pp. 41-46.

9.	 Dong, X, Lian, J (2018). Structural vibration monitoring 

and operational modal analysis of offshore wind turbine 

structure. Mechanical Structures, vol.30, no.5, pp. 280-297.

10.	 Klarbring, A, Christensen, P (2009). An Introduction 

to Structural Optimization. Solid Mechanics and its 

Applications. Springer Science + Business Media B.V., 

Amsterdam.

11.	 Li, J, Guo, H (2016). Power generation quality analysis and 

geometric optimization for solar chimney power plants. 

Mechanical Structures, vol.35, no.15, pp. 228-237.

12.	 Olason, A, Tidman, D (2010). Methodology for Topology 

and Shape Optimization in the Design Process. Chalmers 

University of Technology, Division of Dynamics, Göteborg.

13.	 Parkinson, A, Balling, R (2013). Optimization Methods for 

Table 5: Results of three types of modal analysis

Variant A Variant B

Natural frequency (Hz) Analytically Experimentally Numerically Analytically Experimentally Numerically

ω1 267,5479 265,91236 263,692 42,0458 47,15717 41,708

ω2 737,50622 731,29338 725,561 263,4973 219,79543 260,82

ω3 1445,8098 1430,00562 1419,148 737,7992 733,39265 728,675

ω4 2389,9968 2355,56978 2331,261 1445,7922 1329,92324 1423,995

AMS _1-2021.indd   57 26.04.2021   6:47:45



58 VOLUME 25, No. 1, 2021

Engineering Design. Brigham Young University, Brigham.

14.	 Wójcicki, Z, Grosel, J (2015). Experimental (OMA) and 

Numerical (FEM) Modal Analysis of Ball Mill Foundations. 

Accident Analysis & Prevention, vol. 111, no. 4, pp. 858-863. 

15.	 Song, B, Wang, H (2020). Dynamic simulation and 

optimization of clamping mechanism of online tension 

testing machine for wire ropes. Engineering Failure Analysis, 

vol. 95, no. 5, pp. 181-190.

16.	 Bathe, K (1982). Finite Element Procedures in Engineering 

Analysis. Inc. Englewood Cliffs, New Jersey: Prentice Hall.

17.	 Skaar, K (2013). Parameterization and Multiobjective 

Optimization. Norwegian University of Science and 

Technology, Trondheim.

18.	 Bendsoe, M, Sigmund, O (2003). Topology Optimization. 

Theory, Methods and Applications. Springer, New York.

19.	 Olivieri, C, De Paulis, F, Orlandi, A, Pisani, C, Giannuzzi, G, 

Salvati, R, Zaottini, R (2020). Estimation of Modal Parameters 

for Inter-Area Oscillations Analysis by a Machine Learning 

Approach with Offline Training. Energies, vol. 13, no. 23, pp. 

640-645.

20.	 Musiał, M, Trapko, T, Grosel, J (2021). Static and Dynamic 

Stiffness of Reinforced Concrete Beams Strengthened with 

Externally Bonded CFRP Strips. Materials, vol. 14, no. 4, pp. 

910-917. 

21.	 Kalybek, M, Bocian, M, Nikitas, N (2021). Performance 

of Optical Structural Vibration Monitoring Systems in 

Experimental Modal Analysis. Sensors, vol. 21, no. 4, pp. 

1239-1245. 

22.	 Le, V, Goo, N (2020). Dynamic Characteristics and Damage 

Detection of a Metallic Thermal Protection System Panel 

Using a Three-Dimensional Point Tracking Method and a 

Modal Assurance Criterion. Sensors, vol. 20, no. 24, pp. 718-

726. 

23.	 Zimmaro, P, Ausilio, E (2020). Numerical Evaluation of Natural 

Periods and Mode Shapes of Earth Dams for Probabilistic 

Seismic Hazard Analysis Applications. Geosciences, vol. 10, 

no. 12, pp. 499-508.

24.	 Drliciak, M, Celko, J, Cingel, M, Jandacka, D (2020). Traffic 

Volumes as a Modal Split Parameter. Sustainability, vol. 12, 

no. 24, pp. 49-54.

25.	 Sivák, P, Frankovský, P, Delyová, I, Bocko, J, Kostka, J, Schürger, 

B (2020). Influence of Different Strain Hardening Models 

on the Behavior of Materials in the Elastic–Plastic Regime 

under Cyclic Loading. Materials, vol. 13, no. 23, pp. 5323-

5330.

AMS _1-2021.indd   58 26.04.2021   6:47:47




