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Abstract: Effects of blower shaped baffles on the fluid dynamics and filtration flux in a membrane 
tube are numerically explored. Both the staggered and inline arrangements of baffles are 
studied. The carbonate calcium suspensions with a concentration of 5 g/L were used as a 
working medium. The efficiency of filtration was determined via the calculation of velocity of 
fluid particles, wall shear stresses and static pressure. An increase in the shear stresses on the 
tube surface, as well as a formation of fluid eddies were observed with the presence an array of 
blower baffles, resulting thus in a significant improvement of the filtration performance. The case 
of the staggered baffles with pith ratio of L/D = 1 and Re = 15,000 achieved an increase in the 
filtration flux rate by 42% and 12%, compared with unbaffled and tube with baffle orientation 
angle of 180°, respectively.
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1. Introduction

The membrane tubes are important equipment employed in water treatment 
systems and other industrial fields concerned with separation and purification 
technology [1-3]. However, the problems of fouling and concentration polarization 
generate a hydrodynamic boundary layer near the membrane walls and yield a 
reduction of the filtration flux [4-8].

The nature of fluids and their physical properties, as well as the design of the 
membrane system play a major role on the formation of cake layer near the membrane 
walls [9-11]. In addition, the acceleration of membrane fouling may be the result of the 
lack of sufficient shear stress on the membrane wall, which reduces significantly the 
filtration flux [12-14]. Recently, a very promising technique to improve the solute mass 
transfer is using baffles known as turbulence developers or vortex generators inside 
the membrane system. These baffles allow changes in the flow patterns and reduce 
the development of hydrodynamic boundary layer, which enhances by consequence 
the filtration flux. Various designs have been proposed by many researchers in order to 
develop the mass transfer in membrane tubes [14-16]. Among the different strategies 
used by means of experiments [17-21], the filtration flux is augmented for two main 
effects: the change of hydrodynamic structure and augmentation of wall shear stress 
on membrane surface.

The CFD (computational fluid dynamic) method is becoming nowadays a very 
suitable tool in the knowledge field of membrane system, due to development of 
numerical methods and machine computers. The CFD method allows obtaining 
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adequate results in less time and with less expense 
of energy [22-26]. Monfared et al. [27] investigated 
the effect of presence of baffles in the membrane 
tube by using the CFD method and they found 
a considerable enhancement in the filtration 
performances. Rainer et al. [28] explored by 
numerical simulations the effect of the presence 
of rotating discs inside the membrane tube and 
they obtained a significant augmentation of 
the filtration execution. Ameur and Sahel [29] 
inserted hemispherical baffles in a membrane 
tube and explored numerically the effect of their 
arrangements (right and left orientations, RO and LO, 
respectively). Their results revealed the superiority of 
LO baffle than the other case, where the filtration 
flux was increased by about 96% for 10 g/L of feed 
concentration of carbonate calcium, compared with 
unbaffled tube. 

The influence of baffle orientation angles as well 
as the diameter ratio was the subject of a numerical 
study conducted by Jafarkhani et al. [30]. The best 
filtration flux has been obtained with the case of 
180° of baffle orientation, due to the intensification 
of shear stress, fluid velocity and solute mass transfer 
on the membrane surface.

In the present paper, the effect of new shaped 
baffles on the performance of membrane tubes is 
explored via the CFD method. An array of blower 
baffles is inserted in the tube under turbulent 
flow conditions. Effects of the baffle arrangements 
and their pitch on the flow structures, wall shear 
stresses, mass flux and pressure drops are the main 
parameters under investigation.

2. Material and method
The geometrical configuration of the present 

study is a horizontal tube with length (L) of 0.2 
m and inner diameter (D) of 0.015 m (Fig.1). The 
thickness of baffle (bt) is 1 mm and its size (d) is 
set to D/2. The first baffle is located at a distance 
of 0.022 m from the inlet tube and the spacing 
between baffles (l) is equal to 0.0225 m. Effects 
of in-line and staggered arrangements of blower 
baffles were tested.

3. Mathematical tools
The continuity and Reynolds averaged Navier–

Stokes equations for a Newtonian, incompressible 
and isothermal fluid, with constant physical 
properties (water) in a tubular membrane are given 

as follows:
Mass conservation:

Fig. 1 Configurations of baffled tubes.

( )ñ ñ 0
t i

i
u

x
∂ ∂

+ =
∂ ∂ ( )1

( )2

Momentum equation:

( )

( )' '

ñ ñ
t

2
3

i
i j

j

ji i
i j

j j i i i j

u u u
x

uu u p u u
x x x x x x

µ µ ρ

∂ ∂
+ =

∂ ∂

  ∂  ∂ ∂∂ ∂ ∂
= + − − + −     ∂ ∂ ∂ ∂ ∂ ∂    

The Reynolds-averaged method to turbulence 
modeling includes the modeling of the Reynolds 
stresses ' '

i ju uρ−  in Eq. (2). The Boussinesq hypothesis 
relates the Reynolds stresses to the mean velocity 
gradients as present in the following equation:
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The turbulent viscosity (mt) is described by:
2

ì, C 0.085t
kCµµ ρ
ε

= = ( )4

where, k is the turbulent kinetic energy, e is the 
turbulent dissipation rate, C 0.085µ =  is the constant 
in k ε−  equations.
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The Reynolds number is defined as: under-relaxation factors of the Fluent software, the 
residual target of 10-7 was considered as a criterion 
of convergence. With a machine having Core i7 
CPU 2.20 GHz with 8.0 GB of RAM, the calculations 
required about 15 hours of CPU time.

5. Results and discussion
The validity of our numerical model and boundary 

conditions is checked at the first stage of our study. 
For this purpose, we based on the works of Liu et 
al. [25] and Jafarkhani et al. [30] and we constructed 
the identical geometrical conditions. The calcium 
carbonate suspensions with a mean particle size 
of 7.96 μm were used as a working medium, where 
the trans-membrane pressure (TMP) was set to 
50 kPa and the inlet velocity was equal to 0.5 m/s  
(Re = 7500). Fig. 2 shows the variations of filtration 
flux vs. the filtration time, for Carbonate calcium at  
5 g/l. The comparison is made for tube without 
baffles and tubes with baffle orientation angle 
of 1800. The comparison between our numerical 
results and the experimental data of Liu et al. [25] 
and Jafarkhani et al. [30] shows a good agreement.

Re /m hU Dρ µ= ( )5

where, r is the density of water, Um is the velocity in 
the inlet section, Dh is the hydraulic diameter, and m 
is the kinetic viscosity of water. 

In order to close the equations system, the RNG 
k-e is the advised model to predict turbulent flow 
baffled ducts [25]. The RNG k-e turbulence model 
is derived from the instantaneous Navier-Stokes 
equations, where the “renormalization group” (RNG) 
is the mathematical technique methods is used for 
this approach.

The filtration flux is defined by Darcy’s equation 
[18, 25, and 28]:

( ) +m c

TMPj R Rµ= ( )6

where, Rm and TMP are the clean membrane 
resistance and the trans-membrane pressure, 
respectively. In the present simulation, a single 
phase was considered and the cake resistance 
Rc was neglected. As the effect of membrane 
compression was neglected, the value Rm =  
2.1010 1/m was employed to studying the flow 
behavior [25, 30]. For unsteady simulation, we can 
compute the filtration flux according to the time of 
filtration, where the time step is set to 0.01 s.

4. Numerical details
Investigations were realized with the assist of the 

computer software ANSYS Fluent. The inlet velocity 
and outlet pressure were respectively set to 0.5 m/s 
(Re = 7500) and 50 kPa for all case studied here. No 
effect of wall suction on the flow characteristics was 
considered, since the filtration rate in membrane 
systems is usually less than 0.5% of the total 
cross-flow velocity. Moreover, no-slip wall and 
impermeable boundary conditions were employed, 
as used by many researchers [25, 31, and 36]. 

The different computational domains were 
meshed by triangular grid elements via the Gambit 
Software. After mesh tests, the less expensive mesh 
size with no additional changes than 2.5% in the 
filtration flux, had about 880,000 elements. The finite 
volume method was used to solve the governing 
equations. The first-order upwind numerical scheme 
was adopted for the discretization of equations 
and the SIMPLE algorithm is used to perform the 
pressure-velocity coupling. Under the default 
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Figure 2: Filtration flux vs. filtration time for TMP = 50 kPa and 
5g/l for carbonate calcium.

Figure 3: Axial velocity contours, for in-line blower baffles.
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Figure 4? Axial velocity contours, for staggered blower baffles.

values of wall shear stress in the membrane surface. 

5.1. Flow fields
It is well known that the reduction of the filtration 

flux may be mainly caused by the build-up of the 
hydrodynamics boundary layer, which is observed 
in smooth membrane tubes. For this reason, many 
efforts have been made by researchers to enhance 
the performance of such systems by introducing 
several kinds of baffles (for example, see [32-37]). 

This study shows the development of flow 
patterns when blower baffles are inserted in the 
membrane tube. Figs. 3 and 4 illustrate the contours 
of flow distribution for Re = 7500. In the unbaffled 
membrane tube, the particles of fluid are more 
prone to deposit on the membrane surfaces to 
form a thick layer, however, the fluid flow is fully 
turbulent in the membrane tube equipped with in-
line and staggered blower baffles. The formation of 
hydrodynamic boundary layer is reduced and the 
velocity fluctuations are increased in the baffled 
tube, resulting thus in a reduction of concentration 
polarization and membrane fouling, and enhanced 
performance of the system.
5.2. Wall shear stress

In the conception of efficient industrial 
membrane systems, the intensification of velocity 
fluctuations and shear stresses on the membrane 
walls is required. For inline and staggered 
configurations of blower baffles, variations of the 
wall shear stress vs. Reynolds numbers are presented 
in Fig. 5. This figure illustrates clearly that the rise 
of Reynolds numbers augments the wall shear 
stress and as a result, it augments the fluctuation 
of velocity and decreases the suspension of fluid 
particles on the membrane walls. 

The highest values of (WSS) are remarked for 
chief value of Reynolds number (Re = 1500). 
Where, for inline and staggered arrangements of 
baffles, the maximum, values are 58 Pa and 74 Pa 
respectively. Hence, the staggered blower baffles 
present the better choice to generate the highest 
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Figure 5: Wall shear stress versus (a) Re and (b) L/D.
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Figure 6: Pressure drop along the tubes.

Therefore, it is necessary to optimize the better 
configuration that is used to design the membrane 
system. Therefore, the effect of the spacing between 
baffles or (baffles pitch ratio, L/D) is also analyzed in 
this section. Fig. 6 shows the evolution of the wall 
shear stress versus different values of pitch ratios. 
This figure illustrates that the augmentation of the 
baffle pitch ratio decreases the generation of the 
wall shear stress due to the diminution of the vortex 
intensity between of two successive baffles. As a 
remark, the minimum value of pitch ratio (L/D = 1) 
presents the maximum value of wall shear stress  
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(86 Pa), at the highest Reynolds numbers value  
(Re = 15,000).

escapement or (baffles pitch ratio, L/D) is also 
analyzed in this section. 

Fig. 7(b) shows the distribution of the pressure 
versus different values of pitch ratios. This figure 
depicts that the increases of the baffle pitch ratio 
decline the pressure losses due to the diminution 
of the turbulence intensity between of two 
successive baffles. As a remark, the minimum value 
of pitch ratio (L/D = 1) present the maximum value 
of pressure drop (130 Pa), at the highest Reynolds 
numbers value (Re =15,000).

5.4. Optimization of the staggered configuration of baffles 
The space between two successive baffles 

influences directly the behavior of the filtration 
flux in a membrane tube. Hence, it is necessary to 
study the effect of this geometrical parameter in 
the presence of the blower baffle shape as a new 
concept in this paper. 

As we discussed above, the pitch ratio (L/D) or 
the space between two successive baffles influence 
directly on the wall shear stress and pressure drop. 
For an interval of (L/D = 1 to 2), each the (WSS) and 
pressure drop tend to decrease in the rise of the pitch 
ratio (L/D), for all Reynolds number values. Therefore, 
the smallest value of pitch ratio (L/D = 1) and the 
highest Reynolds number (Re = 15,000) create the 
peak values of wall shear stress and pressure drop, 
which are 86 Pa and 130 Pa, respectively. 

As discussed above, the staggered baffles create 
the highest values of (WSS) and pressure drop. 
Therefore, these configurations ensure a better 
filtration time. For the baffle pitch ratio (L/D) of 
1, variations of the filtration flux according to the 
filtration time are given in Fig. 8. 
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Figure 7: Pressure drop versus (a) Re and (b) L/D.

5.3. Static pressure 
For Re = 7500, Fig. 6 reveals the variation of 

static pressure for two configurations. The pressure 
losses along the membrane tube are approximately 
57.5 and 52.8 kPa for the staggered and inline 
blower baffles arrangement, respectively. The 
highest pressure drops values for the staggered 
configuration are due to the deviation and the 
change of the flow direction inside the tube. This 
increase of pressure losses yields an additional 
energy cost of the system. 

Fig. 7(a) presents the pressure drop variation 
versus Reynolds number value for two configurations. 
The figure shows clearly that the pressure drop 
increase in the rise of the Reynolds number values 
for staggered and inline arrangements. Then, the 
staggered blower baffles generate maximum values 
of pressure drop. 

Hence, it is necessary to adjust the better 
arrangement that is used to design the membrane 
system. Therefore, the effect of the baffle’s 

Figure 8: Filtration flux vs. filtration time for TMP = 50 kPa and 
5g/l of carbonate calcium.
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From the figure, analysis of numerical results 
expose that the staggered baffles produce a high 
steady state flux than the unbaffled membrane and 
membrane of baffle orientation angle of 180°, with 
an increase by 42% (than that unbaffled tubes) and 
12 % (than that baffle orientation angle of 180°) at 
the feed concentration of 5 g/L.

6. Conclusion
The turbulent flow in a baffled membrane tube 

with staggered and inline arrangements of baffles 
were investigated using CFD Ansys FLUENT software. 
The velocities, wall shear stresses, static pressure 
are physical parameters were used to predict the 
turbulent flow characteristics for unbaffled tube, 
staggered and inline baffles.

The filtration flux was evaluated by using the 
shearing force as a primordial parameter. The 
numerical results exhibited an intensification of 
velocity fluctuations and shear stresses in the 
membrane tube with the presence of an array of 
staggered blower baffles. The strong changes in 
flow direction and eddies generated behind each 
baffle are responsible of the enhancement of the 
filtration flux.

The case of the staggered baffles with L/D = 1 
and Re = 15,000 produces the maximum values 
of wall shear stresses (WSS) and gives the greatest 
filtration flux rate compared with unbaffled tube 
and others types of baffled membranes existing in 
the literature.
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