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Abstract: The contribution of the paper is to determine the critical compressive force for a thin-
walled cylindrical shell made of aluminium alloy. The solution of the problem involves use of the 
experimental method. A numerical approach, based on the finite strip method is chosen as the 
verification step. In order to determine the critical force, specimens representing a cylindrical 
thin-walled shell are used. Subsequently, the results obtained by the finite strip method are 
checked by experimental measurements.

Keywords: cylindrical shell, loss of stability, experimental measurement, critical force, finite strip me-
thod.

1. Introduction and Historical Overview of Mathematical Theories

Nowadays, thin-walled shell elements represent an optimal solution concept in a 
requirement where the main parameter is a high load-bearing capacity with a relatively 
low weight of the proposed structure. Such types of solutions can be applied in the 
field of civil engineering, aeronautics and general engineering. One of the negative 
phenomena connected with these structures is loss of stability as a result of compress 
loads. A particular problem with cylindrical shell elements is the determination of critical 
force causing loss of stability. The results gained for such structures are very sensitive 
to geometric deviations, the manner of shell fixation and to various imperfections of 
unknown origin. For this reason, several mathematical theories describing this negative 
phenomenon have been derived. The most famous works are listed below.

One of the first significant works based on the concept of linear elasticity was 
developed by Love [1]. In this work he started from Kirchhoff's hypotheses, which 
were originally derived for the theory of plate bending. By simplifying stress-strain 
and constitutional relationships, Love presented a set of mathematical solutions 
for thin-walled, flexible shell elements. Subsequent development [1], managed to 
remove some of the shortcomings contained in the mentioned mathematical theory. 
Reissner presented in his work [2], new equations of equilibrium as well as relations for 
deformations and stresses. By applying the principles of virtual work and Kirchhoff-Love 
hypotheses, the first order approximation theory was derived by Sanders [3]. Koiter 
introduced optimization of inconsistencies for relationships describing the twist of 
shells [4] and [5]. The authors [6], [7] and [8] independently developed an approximation 
theory of second order for shell elements. The general relations and equations of this 
theory are a direct result of the application of Kirchhoff's hypotheses together with 
the assumption of small displacements to the corresponding equations of the theory 
of elasticity. The application of this theory is generally limited to cylindrical shells. In 
addition, it was found that general relations of the second order approximation theory 
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Figure 1: Dimensions of the test specimen.

of shells are very difficult for the applicability of the 
calculation. Novozhilov at [9] developed another 
method of second order approximation theory. As 
with the theory based on [6], [7] and [8], relations 
for proportional deformations and stresses were 
obtained by applying the Kirchhoff hypotheses. 
Gol'denveizer has made valuable contributions to 
the general theory of thin shells [10]. He was the 
first who formulated the compatibility conditions 
for stress components in the general shell theory. 
Second order approximation equations were 
derived by Vlasov [11], directly from the general 
three-dimensional linear elasticity equations for the 
thick-walled shell. It has been hypothesized that 
the transverse normal and shear stress components 
may be neglected for thin-walled shells [12]. 
The above mentioned theories were formulated 
from the classical shell linear theory. It is known 
that the equations of these theories, which are 
based on Hooke's law and neglect of non-linear 
terms in equations for stress components, and in 
equations of equilibrium, have a unique solution 
in each case. In other hands, linear shell theories 
determine a unique equilibrium position for each 
shell with a defined load and bond. Reissner [13] 
derived a non-linear theory of symmetrically loaded 
axisymmetric shells. In this theory, the assumption 
of small displacements has been abandoned, while 
the remaining assumptions of general higher order 
approximation theories have been retained. The 
derivation of the general geometric non-linear 
theory of thin shells was described by Naghdi and 
Nordgren [14], Sanders [15] and Koiter [16]. Vlasov 
at work [11] derived a set of equations for non-linear 
shells with a small radius of curvature. Subsequent 
development of the general nonlinear theory of 
thin shells was carried out by Mushtari and Galimov 
[17], Simmonds and Danielson [18].

2. Proposal experimental and numerical 
Solutions

The object of the study is a thin-walled 
cylindrical specimen of circular cross-section made 
by aluminium alloy. The designation L represents 
the length, h is the surface thickness and r the 
radius of the cylinder, Figure 1. The dimensions of 
the specimen are:
aL = 100 mm,
ah = 0.11 mm,
ar = 33 mm.

In terms of length, cylindrical shells can be 
divided into three classes. The first class of the 
shells, are named, the shells of small lengths. Their 
specific stability loss behavior can be compared to 
the stability loss behavior of plates. The collapse of 
such shells usually results in only one sinusoidal half-
wave in the axial direction, under the effect of axial 
compressive stress. The next one class are named 
long shells, whose character of loss of stability 
manifests itself as a displacement of the shell in the 
radial direction without local deformation of the 
surface also known as Euler´s task of the pressured 
rod. From the standpoint of loss of stability, shells are 
referred to as cylindrical shells of medium lengths. 
Their collapse under the influence of compressive 
loads can cause local or global loss of stability. An 
example of a local loss of stability of a cylindrical 
shell may be the geometric imperfection of the shell 
which causes a deviation from the middle surface of 
the shell. Such slight deviations result in a significant 
decrease in shell bearing capacity and are therefore 
the most demanding in terms of structural design of 
medium-length shell [12], [19] and [20].

The relationship that characterizes the proposed 
shell into the above classes has the form [20]
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where, e represents the Poisson ratio and Z 

represents the shape factor. It is value of the 
ratio of shell length to its radius and is useful for 
distinguishing between short, medium and long 
cylindrical shells. If Z magnitude is

( )2

( )3
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then, shells are classified into short lengths class. On 
the other hand, if Z magnitude is
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then, shells are classified into medium and long 
lengths classes.

By solving the form (1) the value of Z has been 
achieved Z = 2600. Based on form (3), it's possible 
to determine correct class of shells length. The 
proposed test specimens may be considered to be 
shells of medium and long length [20]. In Figure 2, 
are given the test specimens.

2.1. Proposal of the static tensile test
The most commonly used method for the 

determination of basic material parameters is the 
static tensile test. In order to carry out such a test, 
it is necessary to produce test specimens intended 
for the tensile test according to the actual valid 
technical standard. In order to evaluate the tensile 
test data, the measurement must be repeated. The 
minimum recommended number of tensile test 
measurements is given by the standard. For this case 
a minimum of 10 measurements is recommended 
[21]. In the static tensile test evaluation process, 
samples whose breakage has occurred outside 
the functional area of the specimens should be 
excluded. In Figure 4, probable variants of sample 
breakage are shown.

Figure 2: The test specimens.
 

The static pressure experimental test is carried 
out on a testing device. Both ends of the test 
sample are inserted into the fixtures, Figure 3, which 
is attached to the lower and upper jaws of the test 
device. In this way, unwanted displacement of the 
sample during loading is avoided, and due to the 
manufacturing tolerances of the fixtures, fixed bond 
of the shell can be assumed.

Figure 3: Variations of the fixtures.
 

20 pieces of test specimens were used for the 
experimental measurements, which is a sufficient 
sample for statistical evaluation of the measured 
data. The monitored statistics data are the standard 
deviation, arithmetic mean and median. A 
numerical calculation program based on the finite 
strip method was created to verify the obtained 
results. Before the numerical calculation itself, it was 
necessary to obtain material characteristics of the 
aluminium alloy used for these specimens.

Figure 4: Variants of the specimens breakage.

 

The specimen labeled by 1, represents the 
breakage point of the specimen in the functional 
area and such a sample is satisfactory for evaluation 
process. The specimen labeled by 3, represents 
the limit breaking point. It may be noted that the 
rupture passes through the defined functional area 
of specimen. Such cracked specimens may still be 
considered satisfactory for evaluation process, but 
account should be taken of the circumstances of 
fracture propagation. At last, the specimen labeled 
by 52, is unsatisfactory due to the fact, that fracture is 
outside of the functional part of the specimen.
2.2. Proposal of numerical program based on the finite strip 
method

The finite strip method can be considered as a 
special form of the finite element procedure using 
the displacement approach. Unlike the standard 
finite element method, which uses polynomial 
displacement functions in all directions, the finite 
strip method calls for use of simple polynomials in 
some directions and continuously differentiable 
smooth series in the other directions, with the 
stipulation that such series should satisfy a priori 
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the boundary conditions at the ends of the strips 
or prisms. The general form of the displacement 
function is given as a product of polynomials and 
series. Thus for a strip, in which a two-dimensional 
problem is reduced to a one-dimensional problem, 
[23]
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Similarly, in the case of a solid element (e.g. prism, 
cube, etc.), the three-dimensional problem is 
reduced to two-dimensional, and the displacement 
function may have the form

Finally, the three dimensional problem is considered 
to be one dimensional in the case of layers if

In the above expressions, the series has been 

simplified to the rth, and tth terms. f
m
(x), f

m 
(x,y) and 

f
mn

(z) are polynomial expressions with unspecified 
constants for mth, nth order of the sum. X

m
, Y

n 

represent sums that satisfy the boundary conditions 
in the x, and y directions and also indicate the 
deviated shapes in these directions. The final strip 
form is shown in Figure 5.

In the case of the proposed numerical program, 
derived stiffness matrices were used for the case, 
when the shell has at both ends by fixed-fixed 
boundary conditions [24].

Figure 5: Form of the finite strip [23].

 

Table 1: Measured critical forces.

Sample number 1 2 3 4 5 6 7 8 9 10

F
cr

 [N] 1051.3 734.2 964.3 952.6 704.4 796.9 750.6 605.4 1038.2 1001.6

Sample number 11 12 13 14 15 16 17 18 19 20

F
cr

 [N] 782.5 910.6 713.6 783.5 836.2 815.3 840.9 827.6 797.4 1021.4

Table 2: Statistically processed and evaluated results of the 
critical forces.

Standard deviation [-] Arithmetic mean [N] Median [N]

120.244 805.8 783.58

Figure 6: Critical forces (arithmetic mean and median).

 

Figure 7: Histogram and normal distribution of determined 
critical forces.

 

3. Results 
3.1. Result of statics compressive experimental measurement 
for critical force determination

In the evaluation process of the experimental 
measurement, 3 pieces of samples were not used. 
These samples were characterized by significantly 
lower achieved levels of critical force, than that of 
the other samples. This was caused by a spreading 
deformation from the fixture area of the samples, 
which was probably due to a poor stabilization of 
the specimen in the fixture, damage of the test 
specimen surface due to handling operations or 
unknown factors. The determined levels of the 
critical forces are listed in.

In the Table 2, statistical values of measured 
values of critical forces are given.
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The determined critical forces are plotted with 
arithmetic mean, median in Figure 6. In Figure 7, 
shows the constructed histogram along with the 
normal distribution of the measured values.
3.2. Result of static tensile Test

The determined tensile test parameters are:
aE - Young modulus GPa, 
aF

max
 - maximum achieved force N, 

as
m
 - strength MPa,

ae
B
 - elongation at fracture of sample, e

M
 - total 

strain at F
max

 %,
as

y
 - stress at yield point kPa.

Table 3 shows the individual monitored variables 
for the respective samples. From the obtained 
tensile test data, it is possible to evaluate the Young 
modulus E, which is given in Table 4. 

Further, we can compute shear modulus G. The 
form which is calculated is defined as

Figure 8: Histogram and normal distribution of determined 
Young modulus E.

 

 

Figure 9: Mesh of finite strips of cylindrical shell.
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The Poisson ratio has a value for aluminium 
alloys e = 0.33 [23].

Table 3: Determined values of static tensile test.

Specimen number E [GPa] F
max

 [N] σ
m

 [MPa] ε
B
 [%] ε

M
 [%] σ

y
 [kPa]

1 23.107 399.145 290.287 2.522 2.482 20381

2 24.661 402.695 292.869 3.335 2.977 15280

3 29.507 376.41 279.753 3.814 3.297 91567

4 24.053 379.15 275.745 3.069 3.007 89574

5 19.685 408.82 297.324 3.386 3.247 11763

6 17.479 410.595 298.615 3.566 3.517 11705

7 23.660 390.28 283.840 2.543 2.455 11705

8 11.293 379.857 276.273 2.784 2.517 11469

9 14.603 398.26 289.644 3.074 3.065 11996

10 17.336 391.085 284.425 2.714 2.71 11469

Standard deviation [-] Arithmetic mean [GPa] Median [GPa]

5.448 20.53 21.39

Table 4: Statistically processed and evaluated data for Young 
modulus E.

The Figure 8 shows histogram for the determined 
values of the Young modulus E.
3.3. Result of numerical calculation based on the finite strip 
method

The material data based on the static tensile test 
entering the numerical calculation program are:
aE = 20.53 GPa,
aG = 7718 MPa,

ae = 0.33.
The computed value of the critical force 

F
cr
, determined by the finite strip method, is 

( )8
 Figure 9 shows a mesh of finite strips 

of the cylindrical shell. 

Figure 10 shows collapsed shape of thin-walled 
cylindrical shell computed by the finite element 
method.

4. Discussion 
As mentioned in the aforementioned papers 

[12], [19] and [20], there are three theoretical different 
values of critical loads. The first of the loads ( )9  
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represents the state where the upper critical load can 
be defined as the largest load to which the original 
shell equilibrium configuration remains stable. The 
second of these loads is ( )10 , which represents 
the lower critical load into which the original shell 
equilibrium configuration of the shell remains stable 
with respect to minimal surface damage. The third 
load crF  represents the actual stress value at which 
the cylindrical shell collapses. Their range is always 
between ( )9  and ( )10 . For quality produced shells 
is the value of crF  closer to ( )9 . The test samples 
were made from aluminium alloy can for storing 
carbonated beverages. Such storage containers are 
manufactured by deep drawing technology, which 
results in the initial of plastic deformations into the 
container shell, which create different stresses in the 
materials. This is one of the main reasons why the 
experimental measurement of critical forces resulted 
in a large dispersion of the measured values, which 
are shown in Table 1 and Table 2. The maximum and 
minimum values of critical force were measured 
for the sample with number 1 and number 8. Their 
values are max 1051.3NcrF =  and min 605.4NcrF = , which 
represents a 42.4% decrease of critical force value. 
The calculated value of critical force using the 

finite strip method is 

( )8
 The difference 

between the finite strip method and the calculated 
median of the experimental measurement is 14.9%. 
Figure 11 shows the determined critical force 
values obtained by experimental measurement and 
computed using the finite strip method.

5. Conclusions 
The presented article introduces the historical 

development of mathematical theories, which are 
used for design of shell elements. In the second 
followed section (Proposal experimental and 
numerical Solutions) was described the individual 
tasks that had to be done before the experimental 
and numerical solution of the mentioned issue. A 
numerical method based on the finite strip method 
was used for the verification process. In terms of 
manufacturing accuracy, which was achieved by 
the manufacturing technology applied for the 
manufacture of fixtures, the fixtures could be 
considered fixed bond, which was also reflected 
in the boundary conditions and individual stiffness 
matrices of the proposed computational program. 
In order to consider the calculated values of the 
script correct, it was necessary to ensure the most 
accurate input material data. These were obtained 
by static tensile testing. The cause of the dispersion 
of the measured values of the critical forces is 
considered to be the initial plastic deformation of 
the casing, which arose as a result of manufacturing 
technological operations of the semi-product from 
which the test samples were, produced as well 
as shape imperfection. The difference between 
the verification calculation and the median of the 
measured forces is approx. 15%. Such a significant 
difference in the determined values just makes the 
thin-walled shells more sensitive to different surface 
imperfections. This is the main reason why the 
proposed shell elements need to be manufactured 
in the required quality and accuracy class to ensure 
the highest possible real load-bearing capacity of 
the shell.
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