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Abstract: Numerical simulations of crack initiation and propagation is presented. Both, 
interface and material cracks are modelled within the damage theory introducing two 
independent damage parameters. The interface cracks appearing in an adhesive layer of a 
contact zone between structural components consider cohesive zone models with general 
stress-strain relationships implemented in an energetic formulation. Accordingly, the fracture 
of bulk domains also includes variational consideration and leads to phase-field damage 
which causes a very narrow band of defected material constituting the actual crack. The 
proposed computational approach has a variational form, the solution being approximated 
by a time stepping procedure, a finite element code, and quadratic programming algorithms.
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1. Introduction
	 Damage of engineering constructions may lead in many cases to forming of 
cracks. Such cracks then modify mechanical and other characteristics of structures. 
Efficient computational algorithms for analysing and predicting such situations 
are highly appreciated as they may reduce production and operation costs of 
constructions and machines. The arising cracks may have various origin, but 
basically, they appear either inside material domains or along material interfaces, 
e.g. adhesive joints or contacts. If a crack in the material forms first, after its 
propagation it may hit an interface and later continue growing along it. Also, an 
opposite situation is possible, when a primary interface crack kinks into the bulk. 
The present approach can study both situations.
	 The proposed model interprets cracks in terms of damage mechanics where the 
situation in the structure, concerning e.g. density of micro-cracks or micro-voids, is 
described by internal variables [1,2] which reflect the state of material or adhesive 
degradation, and reaching their limit value means a new crack formation or existing 
crack propagation.
	 As other nonlinear phenomena, damage and fracture can be treated in terms of 
energies stored or dissipated from the structure allowing for a variational solution 
technique.  Author’s previous outputs [3,4,5] provided several such approaches and 
their modifications for solving quasi-static problems with interface cracks in a way 
of a cohesive zone model (CZM) [6-7]. Keeping the same variational philosophy [8] 
with material cracks included to the model generalisation, a damage phase-field 
model (PFM) [9-11] was considered to simulate such crack growth. These cracks are 
also called diffuse as, relating them to a scalar material damage variable, represented 
by at least a continuous function, they seem to be made vague, though the width 
of their haze can be appropriately controlled. 
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	 Numerical solution for such cracks then 
comprises some evolution models which naturally 
incorporates standard time stepping and finite 
element discretisation. The variational character 
of the approach then includes optimisation 
algorithms, too. In the simplest case, the pertinent 
functionals are considered convex even quadratic 
for whose minimisation there exist quadratic 
programming algorithms [12], which can be 
straightforwardly adapted for the general convex 
case if applied sequentially [13].
	 In what follows, we first describe the physical 
and mathematical model in terms of energies 
and governing relations for their evolution, and 
then we show selected aspects of the model 
discretisation. Finally, we document the behaviour 
of the proposed approach by a simple numerical 
test.

2. Physical and mathematical model description
	 Let us consider a domain W which consists of 
at least two bonded parts as for two such parts 
WA and WB is shown in Figure 1. The respective 
boundaries of the parts are denoted GA and GB. 
The common part of the boundaries, i.e. a contact 
zone, a stick zone or an interface, is marked GC. 
Each of the boundaries is additionally split into 
disjoint parts according to prescribed boundary 
conditions: GD where displacements u are given 
by a known function g, and GN where tractions p  
are supposed to be prescribed by another known 
function f.
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Fig. 1: Description of a domain.

 

	 As the boundary conditions change in time, the 
state of the model, described by its energy state, 
evolves. This state is described by displacement 
field u in the interior of the domains, a gap of 
displacements 

 
u  along interfaces, and two 

internal parameters a and z characterising 
current damage and varying between 1 and 0: 
the former parameter pertains to the damage 

state derived from the damage PFM in the 
interior of the domains so that the maximal value 
a=1 corresponds to undamaged state and the 
minimal value a=0 belongs to total damage, 
meant as a crack. Correspondingly, the latter 
parameter characterises the state of the interface, 
considered as a negligibly thin adhesive layer, in 
the same manner with z=1 corresponding to the 
undamaged adhesive and z=0 pertaining to an 
interface crack along the adhesive. It should be 
noted that in similar models of other authors the 
values for damaged and undamaged state may be 
interchanged, cf. [8,9].
	 The energy state includes the free energy 
represented here by the elastic stored energy E of 
the domain under plane strain conditions and of 
the interface which may be considered as follows:

( )1

	 for an admissible displacement field u, in the 
sense that it satisfies the displacement boundary 
conditions on GD, and admissible damage 
parameters a and z, i.e. their values lying in the 
interval [0,1]. Otherwise, it is considered that the 
value of E is infinite. The introduced parameters 
include stiffness matrix C of the material of the 
domains, initial stiffness k of the undamaged 
adhesive layer and the compressive stiffness gκ
to replace standard Signiorini contact condition 
by a normal stiffness penalisation energy term. 
Further, the energy accumulated due to new 
crack appearance requires cG  as fracture energy 
for domain cracks, and I

cG  as fracture energy of 
the interface cracks. The functions F(a), φ(z) are 
degradation functions of the domain (related to a 
PFM) and interface (related to a CZM), respectively. 
They determine how the stiffness of the material 
decreases during the damage process. There 
are various representations of them in literature 
which are restricted here to the simplest choices: 
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 where e is a characteristic length 
parameter for the PFM (determining the width of 
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the diffuse crack), and the parameter 0ε adjusts 
residual stiffness after total damage to avoid 
degeneration of the totally damaged material 
in the numerical solution. Standardly, the term 

crack
cG ds

Γ∫  is used for accumulating energy of the 
crack in Griffith-like models. Here, it is replaced 
by a generalised Abrosio-Tortorelli [14] functional 
(the term containing cG  in Eq. (1)) controlling 
the evolution of the damage PFM diffuse crack. 
The interface degradation function is set to 
( ) 2 ,ϕ ζ ζ=  and it modifies the elastic energy of the 

damageable interface as in the approaches from 
[4,5] but in a simplified form, in order to have the 
same form as for the material cracks.
	 Some energy of the crack formation process 
is usually dissipated from the system. While in 
the present model we included it whole into the 
stored energy, it is still necessary to guarantee a 
unidirectional character of the damage process at 
least by the assumption that there is no additional 
dissipated energy. This can be expressed as a 
potential ( ), 0,R α ζ =  provided that 0, 0,α ζ≤ ≤  
otherwise it would be infinite to guarantee 
impossibility of such a state. 
	 Finally, if there are some external forces, their 
energy should be added to the system, too. In 
Figure 1 we considered forces applied at a part of 
boundary GN, their energy includes the functional
	 The relations which govern the state evolution 

( )2

can be written in a form of nonlinear variational 
inclusions with initial conditions (corresponding to 
an undamaged state)
where ∂ generally denotes a partial subdifferential 
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as the functionals does not have to be smooth, 
e.g. R jumps from zero to infinity. For smooth 
functionals, subdifferentials can be replaced 
by Gateaux differentials and the inclusions by 
equations.

3. Notes to the numerical approach
	 Both, a time stepping algorithm and a spatial 
discretisation are required for the numerical 
solution of Eq. (3). The latter is implemented by a 
standard finite element approach using triangular 
elements [15] and will not be discussed here. The 
time discretisation by a semi-implicit fractional-
step method, referred also as staggered scheme, 
relies on separately quadratic character of the 
proposed energy functional Eq. (1) with respect 
to each state variable, which then guarantees a 
variational character of the solved problem. 
	 For the solution, we thus choose a fixed time step 
t for a fixed time range [0,T] such that the solution 
is obtained at the instants tk=kt for k=1,2,...T/t 
and denoted uk for displacements and ak, zk for 
the damage variables. In order to obtain such an 
algorithm from Eq. (3), the derivatives in the rate 
variables are approximated by the finite differences 
e.g. � � �

�
�

� �k k 1

 – the differentiation with respect to 
the rate is accordingly replaced by differentiation 
with respect to ak. These replacements then 
provide Eq. (3) in the following form:
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	 The separation of variables in a staggered 
algorithm then provides two minimisations to be 
performed at each time step: the first minimisation 
with respect to the displacements of the functiona

H u E t u F uu
k k k k� � � � � � � �� �

; , ,� �1 1 ( )5

renders uk as its minimiser (the constraint for u 
is hidden in the definition of E), and the second 
minimisation with constraints 0≤a≤ak-1 and  
0≤z≤zk-1 (the lower bound is hidden in the 
definition of E, the upper bound comes from R) of 
the functional

H E t ud
k k k� � � �, ; , ,� � � � � ( )6

provides zk as the constrained minimiser. These 
two minimisations are solved repeatedly for 
k=1,2,...T/t. In fact, both functionals are quadratic 
in the present case so that various quadratic 
programming algorithms can be used in the 
numerical solution, see e.g. [12].
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4. A computational example
	 The proposed model will be tested in a simplified 
problem to demonstrate mutual interaction 
between an interface and a domain crack.
	 The geometry of the plane strain deformation 
state for the example is shown in Figure 2. We 
consider three mutually bonded blocks, where 
only one of the interfaces, plotted thicker in the 
picture, is damageable and thus allowing for 
cracking. The elastic properties are E = 20.8 GPa, 
u = 0.3 and the fracture energy Gc �

�
0 1

2
. .kJm , while 

that of the vertical interface is Gc
I � �
1

2
Jm . The 

cracking along other interfaces is forbidden by 
setting the fracture energy ultra high. The initial 
stiffness k of the damageable interface is 1 TPam-1. 
The displacement loading g(t) is linearly increasing 
by the velocity vo = 1 mms-1, where the time 
steps are chosen 0.1 ms. The mesh size (min.) is  
h = 0.2 mm.

Fig. 2: Geometry for the example with the interface and the 

material cracks and the used mesh.

 
 

	 The following drawings reveal the character 
of the fracture process. First, there appears an 
interface crack, which stops propagating when 
it reaches the bottom block. The distributions of 
interface variables, namely the normal stress sn and 
the damage variable z, at three selected instants 
are shown in Figure 3. The damage propagation 
in the sense of the CZM appears in the region, 
where z lies between the limit values. In the same 
region, a stress distribution related to the CZM 
can be observed. The apparent stress maximum 
at approximately 30 MPa is in accordance with 
given numerical data, as the model guarantees no 
interface damage evolution for stress lower than 
�Gc

I � 31 6. MPa,  see [4].
	 Similarly, for the domain damage to initiate an 
opening crack it is necessary to reach the level 
3

2
547 7

KGc
�

� . MPa, of the critical stress trace str, where 
K is the bulk modulus, here 20 GPa, and e = 0.01. 

Fig. 3: Interface stress sn and interface damage z for three 

instants, where the first instant corresponds to the moment of the 

interface crack initiation, and the last catches the situation when 

the interface crack tip approaches the bottom body.

 
 

 

 
 

 

Fig. 4: The stress str distribution in the structure while the interface 

crack is propagating shown at the same instants t = 14.5 ms, 16 ms, 

18 ms ((a) to (c), respectively) as in Figure 3. 

 
 

 

(a) (c) (b) ( )a ( )b ( )c

This value is not arrived at while the interface crack 
is growing as can be seen in Figure 4. All these 
pictures show the stress trace distribution in the 
domains at the same instants as used before – its 
maximum is about 100 MPa close to the (interface) 
crack tip. Therefore, this crack does not immediately 
continue to the bottom block, the required energy 
release rate has not been reached yet. Finally, the 
deformed structure with an opening crack shown 
at the same selected instants are shown in Figure 5.

Fig. 5: Crack propagation along the interface with the deformation 

magnified 8 times. The snapshots belong to the state of the 

interface crack at t = 14.5 ms, 16 ms, 18 ms ((a) to (c), respectively), 

introduced in Figure 3.

 
 

 

(a) (b) (c) ( )a ( )b ( )c
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	 The continuing crack appears later and is spread 
in the vertical direction until it approaches the 
fixed bottom side of the bottom block when it 
kinks to the more or less horizontal direction. 
The crack starts growing at the first instant used 
in Figure 6, the time gap between the last instant 
from Figure 5 and the first instant from Figure 6 is 
obvious. The distribution of phase-field damage a 
obeys the expected behaviour of PFM – it is zero 
(or near zero) only in a narrow band introduced by 
the crack. The stress near the crack tip reaches the 
aforementioned critical value as Figure 7 presents 
(notice different range for the stress trace in a 
comparison to Figure 4).

5. Conclusions
	 A computational model for problems with both 
interface and domain cracks has been introduced. 
The model is based on a damage theory and 
combines interface cracks treated as in cohesive 
zone models, and material cracks treated as diffuse 
cracks of phase-field damage. In any case, the 
degradation of elastic properties may be controlled 
by appropriately chosen degradation functions, 
though in this paper only one choice of them has 
been used.
	 From the computational point of view, the 
proposed problem is solved by a staggered 
modelling scheme, guaranteeing a variational 

Fig. 6: Crack propagation in the domain, the displacements are magnified 8 times. The snapshots belong the instants t = 50 ms, 80 ms, 130 

ms, 190 ms ((a) to (d), respectively), where the first instant again corresponds to material crack initiation. The colour bar displays the state 

of the damage variable α.

 
 

 

(a) (d) (c) (b) ( )a ( )b ( )c ( )d

Fig. 7: The stress trace str distribution in the structure while the material crack is propagating, the same instants as in Figure 6:  t = 50 ms, 

80 ms, 130 ms, 190 ms ((a) to (d), respectively).

 
 

 

(a) (d) (c) (b) ( )a ( )b ( )c ( )d

structure for the numerical approximation to the 
model. The methods of quadratic programming, 
and finite elements appeared to be suitable tools 
for the spatially discretised part of the solution.
	 Naturally, there are a few parameters in the 
model which should be appropriately tuned to 
obtain results which agree with experimental 
observations. Nevertheless, it is supposed that the 
present approach turns to be successful also in 
more complex engineering calculations.
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