
6 VOLUME 23, No. 2, 2019

Acta Mechanica Slovaca 23 (2): 6 - 19, June 2019
https://doi.org/10.21496/ams.2019.015

* Corresponding author: Samuel Asefa Fufa, E-mail address: samuel.asefa@aau.edu.et

Acta Mechanica Slovaca
ISSN 1335-2393

www.actamechanica.sk

Received: 2019.02.21
Revised: 2019.03.28

Accepted: 2019.05.14
Available online: 2019.06.15

Shellability of Pointed Integer Partition
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Abstract: In this paper we study, pointed integer partition defined as a pair 
{ } { }1 2, , , , ,ru m u u u m=   where { }1 2, , , ru u u u=   is an integer partition of n - m, and m is a 
non-negative integer ≤ n. Shellability of pointed integer partition with Möbius values -1 

and +1 denoted by nR . We determine the cardinality of nI •  and nR  for 1 ≤ n ≤ 10 and  
n ≥ 1 respectively and compute the Möbius number of nI •  for 1 ≤ n ≤ 6. We have shown hat 

nR  admit an EL-labeling which is EL-shellable.
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1. Preliminary
1.1 Notations
	 Through out this paper we will use the following notations:
1)	 [ ] { }1,2,3, , .n n= 

2)	 X  = Cardinality of X.
3)	 Partially ordered set (or poset) ≡ .
4)	   indicates cover relation.
5)	   indicates vertex of the Hasse diagram.
6)	 On the Hasse diagram marked by red color 0, +1 or -1 are Möbius numbers.
7)	 0̂  and 1̂  stand minimal and maximal elements of poset respectively.
8)	 m denoted Möbius function.
1.2 Partially Ordered Sets and Möbius Function
1.2.1	 Equivalence Relations and Partitions
Definition 1.2.1. A binary relation R on a set X is said to be
a.	reflexive if xRx for all x in X,
b.	symmetric if xRy implies , ,yRx x y X∀ ∈

c.	transitive if xRy and yRz imply , , .xRz x y z X∀ ∈

	 A relation R is called an equivalence relation if it is reflexive, symmetric and transi- tive, and 
in this case, we say that x and y are equivalent, if xRy.
Definition 1.2.2. For an equivalence relation R on a set A, the set of the elements of A that 
are related to an element, say a, of A is called the equivalence class of element a and it 
is denoted by [a].
Definition 1.2.3. A partition of a positive integer n is a way of writing n as a sum of positive 
integers. The summands of the partition are known as parts.
1.2.2	 Partially Ordered Sets
Definition 1.2.4. A partially ordered set P (or poset, for short) is a set (which by abuse of 
notation we also call P), together with a binary relation denoted ≤ (or p≤  p when there 
is a possibility of confusion), satisfying the following three axioms:
1.	For all t P∈ , t ≤ t (reflexivity )
2.	If s ≤ t and t ≤ s, then s = t (antisymmetry )
3.	If s ≤ t and t ≤ u, then s ≤ u (transitivity )
	 We use the obvious notation t ≥ s to mean s ≤ t, s < t to mean s ≤ t and ,s t≠  and  
t > s to mean s < t.  We  say that two elements s and t of P are comparable if s ≤ t or t 
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≤s; otherwise s and t are incomparable, denoted s t  
[10].
	 Similarly the open interval (x, y) can be defined 
as( ) { }, : : If , ,x y z P x x yy Pz< <= ∈ ∈  then we say 
y covers x if x < y and if no z P∈  satisfies x < z < y. 
Thus y covers x if and only if x < y and [ ] { }, , .x y x y=  
Finite posets are represented graphically by the 
Hasse diagram, which is drawn using elements of P 
as vertices and the cover relation as edge (directed 
from below). For instance the Hasse diagram of poset 

3B  consisting of the subsets of the set [ ] { }3 1,2,3=  
ordered by inclusion.

it.
3.	The rank of P is the length of the longest chain in P.
4.	P is graded if all maximal chains have the same 
length.
1.2.3	 Hasse Diagram
Definition 1.2.8. The Hasse diagram of a partially ordered 
set P is the (directed) graph whose vertices are the 
elements of P and whose edges are the pairs (x, y) for 
which y covers x. It is usually drawn so that elements 
are placed higher than the elements they cover [6].
	 With the cover relation at hand, we can get 
a diagrammatic representation of the partially 
ordered set (poset). Let us consider x and y, and 
assume that .x y  Then we draw x in a vertical 
plane below y and connect both with a straight 
line. This is repeated for every ordered pair, i.e., for 
all pairs of two objects for which   relation holds. 
The resulting diagram is denoted as Hasse diagram 
(sometimes partial order set diagram, order 
diagram, line diagram, or simply the diagram) after 
the German Mathematician Hasse, who made this 
kind of visualization popular.
1.2.4	 The Möbius Function of a Partially Ordered Set
Definition 1.2.9. Let P be a finite partially ordered set, and 
let f and g be functions on P, thus f and g are related by 
the formula [10].

Fig. 1: The Hasse Diagram of [3].

	 We say that a poset P has a minimal element 
denoted by 0̂  if there exists an element 0̂ P∈  such 
that 0̂x ≥  for all x in P. Similarly, P has a maximal 
element denoted by 1̂  if there exists 1̂  in P such 
that 1̂x  for all x in P [10].
Definition 1.2.5.
1.	An element a in a poset (S,≤) is called maximal if 
it is not less than any other element in S. That is: 

( ),b S a b∃ ∈ ≤  if there is one unique maximal element 
a, we call it the maximum element (or the greatest 
element).
2.	An element a in a poset (S,≤) is called minimal if 
it is not greater than any other element in S. That is: 

( ),b S a b∃ ∈ ≤  if there is one unique minimal element 
a, we call it the minimum element (or the least 
element).
Definition 1.2.6. A lattice is a partially ordered set in 
which every pair of elements has both a least upper 
bound and a greatest lower bound.
Definition 1.2.7.
1.	A chain of a partially ordered set P is a totally 
ordered subset C P⊆  i.e. { }0 , , lC x x=   with 
{ }0 1 .lx x x≤ 

The quantity 1C= −
 is its length and is equal to the 

number of edges in its Hasse diagram.
2.	A chain is maximal if no other chain strictly contains 

( ) ( ), .
y x

if g xy n Px
≤

∀=∑ ( )1

	 By elementary reasoning, one concludes 
that the values of g can be expressed as 
integral linear combinations of the values of 
f, i.e. ( ) ( )g x f x=  if x is a minimal element, 
( ) ( ) ( ) ( ) ( ) ( )2g x f x f y f z f w f u= − − − −  if the ideal 

generated by x is as shown in figure below.

	 Indeed, for each x in P there is a formula

( ) ( ) ( ),p
y x

g x y x f yµ
≤

=∑ ( )2

where ( ),p y xµ  is a unique integer valued function 
on ,P P×  depending only on P (not on f or g), 
assuming nonzero values only when y ≤ x. The 
function pµ  is called the Möbius function of P, and 
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(2) is known as the Möbius inversion formula.
Definition 1.2.10. The Möbius function m is a function 
that assigns to each interval in a poset p and its 
recursive formulation is given by

( ) ( ):
, .

1
,

,
yz x z

x y
yy

x
xx

y
µ

µ
<≤


∀

= −

∀ =
<∑

Example 1.2.1. Find Möbius function of Figure 1

( ) ( )
{ }( ) { }( ) { }( ) ( )
{ }( ) ( ) { }( ) { }( ) ( )
{ }( ) ( ) { }( ) { }( ) ( )
{ }( ) ( ) { }( ) { }( ) ( )

{ }( )
( ) { }( ) { }( ) { }( )
{ }( ) { }( ) { }( )

( )

ˆ0 0 1,

1 2 3 0 1,

1,2 0 1 2 1 1 1 1,

1,3 0 1 3 1 1 1 1,

2,3 0 2 3 1 1 1 1,

0 1 2 3
1,2,3

1,2 1,3 2,3

1 1 1 1 1 1 1 1

µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ
µ

µ µ µ

/ = =

= = = − / = −

 = − / + + = − − − = 
 = − / + + = − − − = 
 = − / + + = − − − = 
 / + + + +
 = − =
 + + + 

= − − − − + + + = −

1.3 Set Partition
Definition 1.3.1. A set partition p of a set S is a collection 

1 2, , kB B B  of nonempty disjoint subsets of S such 
that 1 .k

i iB S= =  The elements of a set partition are 
called blocks, and the size of a block B is given by B  
the number of elements in B [5].
Definition 1.3.2. Let p be any set partition of the set 
[ ] { }1,2, , .n n=   We represent p in either sequential or 
canonical form. In the sequential form, each block is 
represented as sequence of increasing numbers and 
different blocks are separated by the symbol .  In the 
canonical representation, we indicate for each integer 
the block in which it occurs, that is, 1 2 nπ π π π=   such 
that ,1jj B j nπ∈ ≤ ≤  [5].
	 We denote the set of all set partitions of [ ]n  by 

[ ]( ),nP P n=  and the number of all set partitions of 
[ ]n  by ,n nP P=  with 0 1P =  (as there is only one set 
partition of the empty set). Also, we denote the set 
of all set partitions of [ ]n  with exactly k blocks by 

, .n kP
Example 1.3.1. The set partitions of [3] in sequential 
form are 1/2/3, 1/23, 12/3, 13/2, and 123, while the set 
partitions of [3] in canonical representation are 123, 
122, 112, 121, and 111, respectively. Thus, 3 5.P =
Example 1.3.2. The set partition 14/257/3/6 has canonical 
form 1231242. We have that 1 4 1,π π= =  as both 1 and 
4 are in the first block. Likewise, 2 5 7 2,π π π= = =  as 2, 
5, and 7 are in the second block.

Theorem 1.3.1. Let nP  be the number of set partitions of 
[ ]n . Then Pn satisfies the recurrence relation [5].

1

0
0

1
  1

n

n j
j

witP h initi
n

P al condi ion
j

t P
−

=

− 
=  

 
=∑

Definition 1.3.3. The number of set partitions of [ ]n  into 
k blocks is denoted by S(n, k) or n

k
 
 
 

. The values S(n, k)
are called Stirling numbers of the second kind.
Theorem 1.3.2. The number of set partitions of [ ]n  into k 
blocks satisfies the recurrence [5]

( ) ( ) ( )1, , , 1S n k kS n k S n k+ = + −

with ( ) ( )1,1 1, ,0 0 1,S S n for n= = ≥  
and ( ), 0 .S n k for n k<=

2. Pointed Integer Partition
	 In this section, we have used [2], [7] and [8] to 
find the cardinality for 1 ≤ n ≤ 10, Hasse diagram 
and Möbius function of pointed integer partition 
for 1 ≤ n ≤ 6.
2.1 Introduction to Pointed Integer partition
	 Let n be a non-negative integer. A multiset 

{ }1 2, , ru u u u=   of integers is an integer partition of n 
provided that either n = 0 and { }0u =  or 1n ≥  and

( )a

( )b

1

r

i
i

u n
=

=∑

1, 1,2, , .iu for all i r≥ = 

	 Here we regard the set u as a multiset of positive 
integer which are unordered. Hence a partition of n 
is a representation of n as a sum of integers where 
the order of the terms (or parts) is irrelevant. We 
use multiplicities as a superscript of each iu  in their 
decreasing order to give the multiset u. Thus, for 
instance, for partition of { } { }2 2 223, 6,4,4,3,2,2,1,1 6,4 ,3,2 ,1=

{ } { }2 2 223, 6,4,4,3,2,2,1,1 6,4 ,3,2 ,1=  [8].
Definition 2.1.1. A pair { } { }1 2, , , , ,ru m u u u m=   is called 
a pointed integer partition of n if { }1 2, , , ru u u u=   is an 
integer partition of n − m, where m is a non-negative 
integer ≤ n. The integer m is called the pointed part. It is 
underlined to distinguish it from the other parts of the 
partition, and we write 1 2 ru u u m  to denote a pointed 
integer partition { },u m  [8].
	 Let nI •  denote the set of all pointed integer 
partitions of the non-negative integer n.
Partially order the set nI •  by the two cover relations:
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( )1

( )2

{ }
{ }
1

1

, , , , , , ,

ˆ ˆ, , , , , , , ,

i j r

i j r i j

u u u u m

u u u u u u m≤ +

  

  

{ }
{ }
1 2

1 2

, , , , , ,

ˆ, , , , , , .
i r

i r i

u u u u m

u u u u u m≤ +

 

 

and

	 Here 1û  and ˆ ju  means that the corresponding 
elements are omitted.
	 In [8], the poset of pointed integer partition nI •  
of n was introduced and the study of its cardinality 
was not delt, the Möbius function and the Hasse 
diagram of nI •  for n = 3 and 4 was motivated. In 
this paper we have discussed the cardinality for  
1 ≤ n ≤ 10, the Möbius function of and the Hasse 
diagram 1 ≤ n ≤ 6.
2.2 The Pointed Integer Partition for n = 1
	 The pointed integer partition for n = 1 denoted 
by 10,  and its set of pointed integer partition 

{ }1 10,1 .I • =  Thus 1I
•  has two pointed integer 

partitions and Figure 2 its Hasse diagram.

Fig. 2: The Hasse Diagram of 1I
• .

	 Thus the Möbius function for 1I
•  recursively as 

follow:

( ) ( ) ( )
( ) ( ) ( )

ˆ ˆ ˆ10 0,10 0,0 1

ˆ ˆ ˆ1 0,1 0,0 1

µ µ µ

µ µ µ

= = =

= = − = −

Therefore ( ) ( )11 1 1 .Iµ • = − = −
2.3 The Pointed Integer Partition for n = 2
	 The pointed integer partition for n = 2 denoted by 
110 , to find the set of its pointed integer partition 2 ,I •  
let us list all the covers of 110
110 20,11, 20 2 11 2.and  

Therefore, { }2 110,20,11, 2I • =
	 Hence 2I •  has four pointed integer partitions, and 
its Hasse diagram is

Fig. 3: The Hasse Diagram of 2I •.

	 The Möbius function for 2I •  recursively as follow:

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ110 0,110 0,0 1

ˆ ˆ ˆ20 0,20 11 0,11 0,110 1

ˆ ˆ ˆ ˆ2 0, 2 0,110 0,20 0,11 1

µ µ µ

µ µ µ µ µ

µ µ µ µ

= = =

= = = = − = −

= = − − − =

Therefore ( ) ( )2
2 1 1Iµ • = = −

Fig. 4: The Hasse Diagram of 2I •  with { }ˆ ˆ0,1nI • .

	 The figure 4 with the maximum and minimum 
elements removed. In this reduced poset, there is 
no greatest and least elements.
2.4 The Pointed Integer Partition for n = 3
	 The pointed integer partition for n = 3 denoted by 
1110, to find the set of its pointed integer partition 

3I •, let us list all the covers of 1110
1110 210,120,111 .  But 210  and 120  are the same 
pointed integer partition of 1110, and they have the 
same covers, hence we can take one of them say 
120 , then

120 30,12,21 ; 111 21,12 ; 30 3
21 3 12 3and

  

 

Therefore, { }3 1110,120,111,30,12,21, 3 .I • =
	 Thus 3I •  has seven pointed integer partition and 
its Hasse diagram is [7].

Fig. 5: The Hasse Diagram of 3 .I •

	 The Möbius function for 3I •  recursively as follow:

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

ˆ ˆ ˆ1110 0,1110 0,0 1

ˆ ˆ120 0,120 111 0,111 1

ˆ ˆ ˆ12 0,12 111 0,1110 0,120

0̂,111 1

ˆ ˆ ˆ21 0,21 0,1110 0,120

0̂,111 1

µ µ µ

µ µ µ µ

µ µ µ µ µ

µ

µ µ µ µ

µ

= = =

= = = − = −

= = = − − −

− =

= = − − −

− =
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ ˆ ˆ3 0, 3 0,1110 0,120

ˆ ˆ ˆ ˆ0,111 0,30 0,21 0,12 1

µ µ µ µ

µ µ µ µ

= = − − −

− − − = −

Therefore ( ) ( )3
3 1 1Iµ • = − = −

Fig. 6: The Hasse Diagram of 3I •  with no 0̂  and 1̂ .

	 Figure 6 with the maximum and minimum 
elements removed. In this reduced poset, the top 
row of elements are all greatest elements, and the 
bottom row are all least elements, but there is no 
maximum and minimum element.
2.5 The Pointed Integer Partition for n = 4
	 The pointed integer partition for n = 4 denoted by 
11110, to find the set of its pointed integer partition 

4I • , let us list all the covers of 11110

11110 2110,1210,1120,1111

	 But 2110,1210  and 1120  are the same pointed 
integer partition of 11110, and the covers of one of 
them contains the covers of the others, thus let us 
take 11120
1120 220,130,310,112,121,  thus 130  and 310  are 
the same pointed integer partition of 1120  and 
they have the same cover, so we can take one of the 
two say 130 . So

130 40,31,13
121 31,13,22
220 40,22
112 22,13
40 4
31 4
22 4
13 4

















	 Therefore, for n = 4,

4

11110,1120,1111,310,220,
121,112,40,31,22,13, 4

I •  
=  
 

	 Hence 4I •  has twelve pointed integer partitions, 
and figure 7 its Hasse diagram [8]

Fig. 7: The Hasse Diagram of 4I •

	 The Möbius function for 4I •  recursively as follow:

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

ˆ ˆ ˆ11110 0,11110 0,0 1

ˆ ˆ1120 1111 0,1120 0,1111

0̂,1110 1

ˆ ˆ130 220 0,130 0,220

ˆ ˆ0,11110 0,1120 0

ˆ ˆ121 112 0,121 0,112

ˆ ˆ ˆ0,11110 0,1120 0,1111 1

ˆ ˆ ˆ40 0,40 0,11110 0,1

µ µ µ

µ µ µ µ

µ

µ µ µ µ

µ µ

µ µ µ µ

µ µ µ

µ µ µ µ

= = =

= = = =

= − = −

= = = =

= − − =

= = = =

= − − − =

= = − − ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

120

ˆ ˆ0,220 0,130 0

ˆ ˆ ˆ31 0,31 0,11110 0,1120

ˆ ˆ ˆ0,1111 0,130 0,121 0

ˆ ˆ ˆ22 0,22 0,11110 0,1120

ˆ ˆ ˆ ˆ0,1111 0,112 0,121 0,220 1

ˆ ˆ ˆ13 0,13 0,11110 0,1120

ˆ ˆ ˆ0,1111 0,130 0,

µ µ

µ µ µ µ

µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ

−

− − =

= = − − −

− − − =

= = − − −

− − − − = −

= = − − −

− − − ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ121 0,112 1

ˆ ˆ ˆ ˆ4 0, 4 0,1110 0,1120 0,1111

ˆ ˆ ˆ ˆ0,130 0,121 0,220 0,112

ˆ ˆ ˆ ˆ0,40 0,31 0,13 0,22 1

µ

µ µ µ µ µ

µ µ µ µ

µ µ µ µ

− = −

= = − − − −

− − − − −

− − − − =

Therefore ( ) ( )4
4 1 1Iµ • = = −
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Fig. 8: The Hasse Diagram of 4I •  with no 0̂  and 1̂

	 A Figure 8 below when the maximum and 
minimum elements are removed. In this reduced 
poset, the top row of elements are all greatest 
elements, and the bottom row are all least elements, 
but there is no maximum and minimum element.
	 The set of pointed integer partition for n = 5 with 
111110  as a base element is denoted by 5I •. List of all 
the covers of 111110  are
111110 21110,12110,11210,11120,11111 .

	 But the partition 11120,21110,12110  and 11210, 
are the same pointed integer partition of 111110  
and they have the same covers, so the covers of one 
of them contains all the covers of the others, thus let 
us take 11120, and hence
11120 2120,1220,1130,3110,1310,1112,1121

with the same manner to the above reason, let 
us take 2120 from 2120  and 1220, and 1130  from 
1130,3110  and 1310, so

( )3

( )4
( )5

( )6

2120 320,230,410,140,212,122,221

1130 230,140,410,113,131

1112 212,122,113

1121 221,131,311,113,122

	 From equation (3) to (6) we have to take only the 
pointed integer partition 140,320,131,221,122  and 
113, since the remaining pointed integer partition 
are the same as to these partitions.
320 50,32,23
140 50,14,41
131 41,14,32
221 41,23
122 32,14,23
113 23,14
50 5
41 5
32 5
23 5
14 5























Therefor, for n = 5,

5

111110,11120,11111,2120,1130,1211,1112,
140,320,131,221,122,113,50,41,32,23,14, 5

I •  
=  
 

	 Hence 5I •  has nineteen pointed integer partitions, 
Figure 9 is its Hasse diagram. Similarly, the Möbius 
function for 5I •  computed recursively as above and 
( ) ( )5

5 1 1 .Iµ • = − = −

Fig. 9: The Hasse Diagram of 5I •

 

 

 

                                                                               

                                                                                    -1 

 

 

                        

                         0                        0                     0                     +1                   +1 

 

 

       0                              0                           0                          0                      -1                             -1 

 

  

         0                                       0                                      +1                                        +1 

                                     

 

                          -1                                                                                -1 

                                                                               

                                                                                                 +1 

                                                                                                                                                                                                                                                                                                                                               

 

1121 1130 2120 

11111 
11120 

 

1112 

140 320 131 221 122 113 

50 41 32 23 14 

111110 

  5 

	 Figure 10 below is when the maximum and 
minimum elements are removed. In this reduced 
poset, the top row of elements are all greatest 
elements, and the bottom row are all least elements, 
but there is no maximum and minimum element.
	 The pointed integer partition for n = 6 is denoted 
by 6I • . To list all the covers of 1111110 :

1111110 211110,121110,112110,111210,
111120,111111


	 But the partitions 211110,121110,112110,111210  
and 111120,  are the same pointed integer partitions 
of 1111110,  so the covers of one of them contains 
the covers of the others, from those let us take 
111120.

Fig. 10: The Hasse Diagram of 5I •  with no 0̂  and 1̂

 

 

 

                                                                             

                        

                           

 

 

        

 

  

         

                                     

 

                           

 

 

 

                                                                                                                                                                                                                                                                                                                                               

1121 1130 2120 

11111 
11120 

 

1112 

140 320 131 221 122 113 

50 41 32 23 14 
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	 Therefore, by the same techniques of 1I
•  to 5I • 

above

111120 11220,11130,11121,11112
11220 2220,1320,1140,1122,1121
11130 1230,1140,1131,1113
11121 2121,1131,1122,1113
11112 2112,1113
2220 420,222
1230 420,150,132,123,330,231
1140 240,150,114,141
2121 321,213,22

















 2,141
1131 231,141,114,132
1122 222,132,123,114
1212 312,222,213,114
1113 213,114

420 60,42,24
330 60,33
150 60,15,51
321 51,24,33
141 51,15,42
132 42,15,33
222 42,24
213 33,24,15
114 24,15
60 6
51 6
42 6
33 6
24 6
15 6







































	 Hence for, n = 6,

6

1111110,111120,111111,11220,11130,11121,
11112,1140,2220,1230,2121,1131,1122,1113,
420,330,150,321,141,132,222,213,114,60,5 1,
42,33,24,15, 6

I •

 
 
 =  
 
  

	 So 6I • has thirty pointed integer partitions and figure 
11 is its the Hasse diagram with Möbius function.
	 Figure 12 is when the maximum and minimum 
elements are removed. In this reduced poset, the 
top row of elements are all greatest elements, and 
the bottom row are all least elements, but there is 
no unique maximum and minimum element.

Fig. 11: The Hasse Diagram of 6I •
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                                                                +1 

 

 

11121 11130 11220 

 111111 111120 

 

11112 

1230 1140 2121 1131 1122 

1111110 

33 

1113 2220 

51 42 60 15 24 

  6 

420 330 321 150 222 132 141 213 114 

Fig. 12: The Hasse Diagram of 6I •  with no 0̂  and 1̂

 

                                                                                                                                          

                

  

 

 

     

 

 

                                       

      

 

  

       

             

     

                            

 

                                                                

 

 

11121 11130 11220 

 111111 111120 

 

11112 

1230 1140 2121 1131 1122 

33 

1113 2220 

51 42 60 15 24 

420 330 321 150 222 132 141 213 114 

Theorem 2.5.1. [Samuel and Melkamu] For n ≥ 1, we 
have ( ) ( )1 ,n

nIµ • = −  where nI •  is the set of all integer 
partition of a non-negative integer n, (see the proof 
in [8])
	 By using Definition (2.1.1) and similar manner to 
subsection from above the set of pointed integer 
partition and its cardinality for 7 ≤ n ≤ 10 as follows:

7

11111110,1111120,1111111,111220,111130,
111112,111121,11140,11230,11113,11131,
12220,11122,11221,1150,1240,1114,1141,

 
1330,2230,1123,1132,1231,1222,2221,160,
250,115,151,340,124,142,241,133,331,223,
2

I • =

7

32,70,16,61,25,52,34,43, 7

 45I •

 
 
 
  
 
 
 
 
  

=
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9

1111111110,111111120,111111111,11111220,
11111130,11111112,11111121,1111140,
1111230,1111113,1111131,1112220,1111122,
1111221,111150,111240,111114,111141,
111330,112230,111123,111132,122220,111231,
11

 I • =

1222,112221,11160,11250,11115,11151,
11340,12240,11124,11142,11241,12330,11133,
11331,22230,11223,11232,12231,12222,2222 1,
1170,1260,1116,1161,1350,2250,1125,1251,
1152,1440,1341,1143,2340,1134,1224,1242,

9

2241,3330,1233,2331,1332,2223,2232,180,
270,117,171,360,126,261,162,450,135,153,
351,225,252,144,441,342,243,234,333,90,18,
81,27,72,36,63,45,54, 9

 97I •

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
=

8

111111110,11111120,11111111,1111220,
1111130,1111112,1111121,111140,111230,
111113,111131,112220,111122,111221,
11150,11240,11114,11141,11330,12230,
11123,11132,22220,11231,11222,12221,

 
1160,1250,1115

I • =

8

,1151,1340,2240,1124,1142,
1241,2330,1133,1331,1223,1232,2231,2222,
170,260,116,161,350,125,251,152,440,341,
143,134,224,242,233,332,80,17,71,26,62,53,
44,35, 8

 67I •

 
 
 
 
 
 
  
 
 
 
 
 
 
 
  
= 10

11111111110,1111111120,1111111111,
111111220,111111130,111111112,111111121,
11111140,11111230,11111113,11111131,
11112220,11111122,11111221,1111150,
1111240,1111114,1111141,1111330,1112230,
1111123,1

 I • =

111132,1122220,1111231,1111222,
1112221,111160,111250,111115,111151,
111340,112240,111124,111142,111241,112330,
111133,111331,122230,111223,111232,11223 1,
222220,112222,122221,11170,11260,11116,
11161,11350,12250,11125,11251,11152,11440,
11341,11143,12340,11134,22240,11224,11242,
12241,13330,22330,11233,12331,11332,12223,
12232,22231,22222,1180,1270,1117,1171,
1360,2260,1126,1162,1261,1450,2350,1135,
1351,1225,1252,2251,1153,1540,2440,1144,
1441,3340,1234,1243,1342,2341,2224,2242,
1333,3331,2233,2332,190,280,118,181,370,
127,172,271,460,136,361,226,163,262,550,
145,451,154,235,253,352,244,442,370,334,
343,19

10

,100,91,28,82,37,73,64,46,55,10

 141I •

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
=

	 From subsections 2.2 to 2.8 we can conclude that,
(i) The Cardinality of nI •  for 1 ≤ n ≤ 10 are

1 6

2 7

3 8

4 9

5 10

2 30

4 45

7 67

12 97

19 141

?n

I I

I I

I I

I I

I I

I

• •

• •

• •

• •

• •

•

= =

= =

= =

= =

= =

=
=

=

 

 

(ii) There are 2n numbers of pointed integer partition 
whose Möbius number different from zero.

3. Shellability of Pointed Integer Partition
3.1 Lexicographic Shellability
	 There are two basic versions of lexicographic 

shellability, EL-shellability and CL-shellability. In this 
paper we will see EL-shellability, and discuss some 
of its consequences.
	 If x and y are elements in a poset P, we say that 
y covers x when x < y but there is no ,z P∈  so that  
x < z < y. In this situation, we write ,x y�  and 
may also say that x y� is a cover relation. Thus, a 
cover relation is an edge in the Hasse diagram of 
P. A rooted cover relation is a cover relation x y� 
together with a maximal chain from 0̂  to x (called 
the root) [9].
	 An edge labeling of a bounded poset P is a map 

( ): ,Pλ ε → ∧  where ( )Pε  is the set of edges of the 
Hasse diagram of P, i.e., the covering relations x y� 
of P, and ∧  is some poset (usually the integers   
with its natural total order relation). Given an edge 
labeling ( ): ,Pλ ε → ∧  one can associate a word
( ) ( ) ( ) ( )1 1 2

ˆ ˆ0, , ,1tc x x x xλ λ λ λ= 

with each maximal chain ( )1 .10̂ ˆ
tc x x=      

We say that c is increasing if the associated word λ(c) 
is strictly increasing. That is, c is increasing if
( ) ( ) ( )1 1 2

ˆ, ,1 .0̂, tx x xxλ λ λ< < <

	 We say that c is decreasing if the associated word 
λ(c) is weakly increasing. We can order the maximal 
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chains lexicographically by using the lexicographic 
order on the corresponding words. Any edge 
labeling λ of P restricts to an edge labeling of 
any closed interval [x,y] of P. So we may refer to 
increasing and decreasing maximal chains of [x,y], 
and lexicographic order of maximal chains of [x,y].
Definition 3.1.1. Let P be a bounded poset. An edge-
lexicographical labeling (EL- labeling, for short) of P 
is an edge labeling such that in each closed interval 
[x,y] of P, there is a unique increasing maximal chain, 
which lexicographically precedes all other maximal 
chains of [x,y] [9].
	 An example of an EL-labeling of a poset is given in 
Figure 13. The leftmost chain, which has associated 
word 123, is the only increasing maximal chain of 
the interval ˆ ˆ0,1 . 

   It is also lexicographically less 
than all other maximal chains. One needs to check 
each interval to verify that the labeling is indeed an 
EL-labeling. A bounded poset that admits an EL-
labeling is said to be edge-lexicographic shellable 
(EL-shellable, for short).

Fig. 13: EL-labeling

3.2 EL-Shellability of Rn

Definition 3.2.1.
(i) Let n be a non-negative integer with n ≥ 3, then Rn 
is the set of pointed integer partitions with Möbius 
function either -1 or +1.
(ii) Let n be a non-negative integer with n ≥ 3, then nI •

is set of all pointed integer partitions that has only 
zero Möbius function.
(iii) nI •  denote the set of pointed integer partitions (see 
section 2.1).
(iii) For n ≥ 3 and { }:n n nI I Rλ τ τ• •∈ = ∈ ∉  then 

( )0̂, 0.
In

µ λ
•

=

Theorem 3.2.1. 
Let { } { }1 2 : 0 1 1 1 : 0 1nR i i n i i n= ≤ ≤ − ≤ ≤ −   

{ } { }2 2 .nn n I •− ⊆ Then ( ) ( )ˆ ˆ0,1 1 n
Rn

µ = −  [8].

Example 3.2.1. Consider ( ) ( )3
3 1 1Iµ • = − = −  and 

( ) ( )3
3 1 1Rµ = − = −  where { }3 1 2 : 0 2R i i= ≤ ≤ 

{ } { } { }1 1 : 0 2 21 3 ,i i≤ ≤  
 Figure 14 is its Hasse

Fig. 14: The Hasse diagram of 3 .I •  and 3R

Example 3.2.2. Consider ( ) ( )4
4 1 1Iµ • = − = −  and 

( ) ( )4
4 1 1Rµ = − = −  where { }4 1 2 : 0 3R i i= ≤ ≤ 

{ } { } { }1 1 : 0 3 22 4 ,i i≤ ≤    Figure 15 is its Hasse

Fig. 15: The Hasse diagram of 4I •  and 4R

                        

                                                                                                                                      +1 

 

                                                                                                           -1                                                       -1                  

                                                                                                                       

                                                                                                       +1                                                               +1                                     

                                                                                                                

                                                                                                      -1                                                                -1   

                                                                                        

                                                                                                                               +1 
11110 

112 

1120 1111 

130 

4 

40 13 

220 121 

22 31 

4 

13 

112 

1111 

11110 

1120 

121 

22 

Proposition 3.2.1. If ,nIλ •∈  then { }:nRη η λ∈   has a 
unique maximal element [8].
	 For instance, consider 

4

11110,1120,1111,130,220,1
.

21,112,
40,31,22,13, 4

I •  
=  
 

It is easy to check that,

{ }
{ }

4

4

220,130,40,31

11110,1 .120,1111,121,112,22,13, 4

I

R

• =

=

Now, for 4130 ,I •∈

{ } { } { }
{ }

4 4

4

21111

0

0,113 20: 1 0 : 20

: 4

R R

R

η η η η

η η

∈ = = ∈ =

= ∈

 



For this set the unique maximal element is 41120 .R∈
Consider 431 ,I •∈  so that { }4 : 31Rη η∈ =  
{ }.11110,1120,1111,121
The unique maximal element for this set is 121 .
3.3 EL-Labeling of Rn

	 [7] Verified the shellability of Rn for 3 ≤ n ≤ 8 by 
labeling, the right side edge set numbers from 1 
through n starting from the most bottom edge, and 
to assign the left side edge set assign numbers 1 to 
n starting from the most top edge.
	 To assign edge set inclined to the left start labeling 
by assigning the number 1n −  to the top most left 
inclined edge set and continue it till you assign 2 to 
an edge, those edge set inclined to the right start 
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labeling by assigning the number ( )4,6,8,
2
n if n =   

and ( )1 3,5,7,
2

n if n+
=   to the top most right inclined 

edge set and continue it till you assign 1 to an edge, 
after that you will remain either one edge or two edges 
unassigned based on whether n is even or odd for 
which you can assign any number less than or equal 
to 2

n  or 1
2

n +  respectively, and conjectured that Rn 
admit an EL-labeling which is EL-shellable.
	 Thus, to prove the conjecture of [7], let us see the 
cardinality, set partition, Hasse diagram and the 
edge labeling for 3 ≤ n ≤ 11.

{ }

{ }

3

3

4

4

5

5

6

1110,120,111,12,21, 3

11110,1120,1111,112,121,22,13, 4

111110,11120,11111,1211,1112,212,113,
23,14, 5

1111110,111120,111111,11121,11112,
1122,1113,123,11

3

6
4

8
5

10
6

For n
R

R
For n

R

R
For n

R

R
For n

R

=

=

=

=

=

=

=

 
=  
 

=

=

=

6

7

7

8

4,24,15, 6

11111110,1111120,1111111,111121,
111112,11122,11113,1123,1114,124,115,
25,16, 7

111111110,11111120,11111111,1111121,
1111112,111122,111113,11123,11114,
1

12
7

14
8

R
For n

R

R
For n

R

 
 
 

=

=

 
 =  
 
 

=

=

=

8

9

9 8

124,1115,125,116,26,17, 8

1111111110,111111120,111111111,
11111121,11111112,1111122,1111113,
111123,111114,11124,11115,1125,11

,

16
9

16,
126,117

1

,27 18, 9

R
For n

R

R

 
 
 
 
 

=

=

 
 
 =  
 
  

=

10

10

11

11111111110,1111111120,1111111111,
111111121,111111112,11111122,
11111113,1111123,1111114,111124,
111115,11125,11116,1126,1117,127,118,
19,28,10

111111111110,1

10

20
11

For n

R

R
For n

R

=

 
 
  =  
 
 
  

=

=

=

11 2

1111111120,11111111111,
1111111121,1111111112,111111122,
111111113,11111123,11111114,1111124,
1111115,111125,111116,11126,11117,
1127,1118,119,29,10,110,1

2

1

R

 
 
  
 
 
 
  

=

Fig. 16: The Hasse diagram of 3R

Fig. 17: The Hasse diagram of 4R

Fig. 18: The Hasse diagram of 5R

Fig. 19: The Hasse diagram of 6R
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Theorem 3.3.1. The cardinality of Rn is equal to 2n, for 
n ≥ 1.
Proof. Observation: Let n nr R=
From the Hasse diagram of previous sections 2.2, 2.3 
and 3.3 we can observe that

1

2

3

4

5

1

2
4
6
8
10

2n n

r
r
r
r
r

r r −

=
=
=
=
=
=
=
=
= +

 

 

 

1 2,n nr r −= +  for all non negative integer n, n ≥ 1 
Let 1 0 01, 2 2, 0n r r r= = + = ⇒ =
In the recursive relation of the sequence 1 2n nr r −= +
	 Let ( )

0

n
n

n
R x r x

≥

= ∑  be the generating function of 
{ } 0n n
r ∞

=

Fig. 20: The Hasse diagram of 7R

Fig. 21: The Hasse diagram of 8R

Fig. 22: The Hasse diagram of 9R

Fig. 23: The Hasse diagram of 10R

Fig. 24: The Hasse diagram of 11R

( ) ( )( )

( ) ( )

( ) ( )

( )
( )

1
1 1 1

1 2
0 1

0

2

2

2 1

12
1

12
1

12 ,
1

n n n
n n

n n n

n
n

n

r x r x x

R x r x r x x x x

R x xR x x
x

R x xR x x
x

R x x by partial fraction
x

−
≥ ≥ ≥

−
−

≥

= +

− = + + + +

  = +   −  
  − =   −  
  
  =

  −  

∑ ∑ ∑

∑ 
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( )
( ) ( )

( )

( ) ( ) ( )

( )

( )

( )

( )

2 2

2 2

0 0

0 0

0 0

0 0

0

2
11 1

1 2
2 2

2 2 2
11 1

2
2 2 1

2 1
2 2

1
2 2

2 2 1

2 1 1

kk k

k k

k k

k k

k k

k k

k k

k k

k

k

x A BLet R x
xx x

A x B x
A and B

x
xx x

x x
k

k
x x

k

k
x x

k

x k x

k x

≥ ≥

≥ ≥

≥ ≥

≥ ≥

≥

= = +
−− −

− + =

= − =
−

= +
−− −

− 
= − + − 

 
 − − − 

= − +  
 

+ 
= − +  

 
= − + +

= + −

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑

⇒

⇒

⇒

( ) 2n
nx R x r n  = = 

Therefore, 2nR n=
	 Hence, the edge labeling, the cardinality and the 
Hasse diagram of nR  for 3 ≤ n ≤ 11 has been seen 
above and based on the conjecture of [7] we have 
conclude the following:
	 (1) As [7] verified there is either one or two remaining 
unassigned right inclined edges based on whether n 
is even or odd for which you can assign any number 
less than or equal to 2

n  or 1
2

n +  respectively, thus we 
have got the new results on this verification.
i.e,
i. For 3 ≤ n ≤ 5 their is no unassigned right inclined 
edge.
ii. For n = 6 and 7 there is one unassigned right 
inclined edge.
iii. For n = 8 and 9 there are two unassigned right 
inclined edges.
iv. For n = 10 and 11 there are three unassigned right 
inclined edges.
	 (2) For n = 6 and n = 7 no need of assign the 
remaining right inclined unassigned edge by 2

n
 or 

1
2

n +  based on whether n is even or odd respectively 
to get maximum chain.
	 (3) For n ≥ 8 by assigned 3 on the remaining 
unassigned right inclined edges between 1111 121  
and 1111 13  we got a maximum chain.
Conjecture. For n ≥ 8 there needed to assign 3 on the 
remaining unassigned right in- clined edges of nR  
between 1111 121 1111 13and   to got maximum 
chain, as verified in the above subsection 3.3 and the 

Hasse diagram 21 to 24
Lemma 3.3.1. For all n, n ≥ 4, 1 2n nR R −= +
Proof. Given l be a pointed integer partition of  
n − 1 with Möbius number -1 and +1 Add 2 1n −  and 
1 1n −  to the left and right top corner of the Hasse 
diagram of l respectively we get a pointed integer 
partition of n with Möbius number of -1 and +1

{ },2 2,1 1 nn n Rλ⇒ − − ∈
since l is arbitrary, we have 1 2n nR R −= +

1 2n nR R −⇒ = +
	 Let ( )nURIE R  denote unassigned inclined edge of nR
Lemma 3.3.2. For all non negative integer n, n ≥ 6
i)	 If n is even, then ( ) ( )1n nURIE R URIE R +=
ii)	If n is odd, then ( ) ( )1 1n nURIE R URIE R+ = +
Proof. (i) Let 1,nRλ −∈  where n − 1 is even, then in 
the Hasse diagram of l the right inclined edges are 
assined from the top to the bottom by

1 1 1, 1, 2, 1
2 2 2

1 3 5. . , , , 1
2 2 2

n n n

n n ni e

− − −
− −

− − −





from Lemma 3.1, we have shown that we can get a 
pointed integer partition of n with Möbius number 
-1 and +1 by adding 2 2n −  to the left corner and 
1 1n −  to the right corner of the Hasse diagram of l.
	 In this case we have increased the number of 
right inclined edge by 1 at the top and these edges 
are labeled by

1 1 1, 1, 2, 1
2 2 2

1 1 3. . , , , 1
2 2 2

n n n

n n ni e

+ + +
− −

+ − −





⇒ The number of URIE of l and { },2 2,1 1n nλ − −  
are equal.
⇒ For all odd natural number n, n ≥ 7, we have 

( ) ( )1n nURIE R URIE R− =
⇒ ( ) ( )1n nURIE R URIE R +=
Proof. (ii) ,nRλ∈  where n is odd
	 In the Hasse digram of l, the right inclined edges 
are assigned from top bottom by

1 1 1, 1, 2, 1
2 2 2

1 1 3. . , , , 1
2 2 2

n n n

n n ni e

+ + +
− −

+ − −





From Lemma 3.3.1 we have shown that we can 
get a pointed integer partition of n with Möbius 
number -1 and +1 by adding 2 2n −  to the left 
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corner and 1 1n −  to the right corner of the Hasse 
diagram of l.
	 In this case we have one additional right inclined 
edge at the top, since n + 1 is even these edges are 
labelled by

1 1 1, 1, 2, 1
2 2 2

1 1 3. . , , , 1
2 2 2

n n n

n n ni e

+ + +
− −

+ − −





since we have one extra inclined edge in 
{ },2 2,1 1 ,n nλ − −  so the number of UREI of 
{ },2 2,1 1 ,n nλ − −  is more than l by 1
⇒ ( ) ( )1 1n nURIE R URIE R+ = +

Theorem 3.3.2. For all non-negative integer n, n ≥ 6 the 
cardinality of unassigned right inclined edge of

4 ,
2

5 ,
2

n

n if n is even
R

n if n is odd

−
=  −


Proof. Prove by induction
	 For n = 6, we have shown in the Hasse diagram 19 
i.e ( ) 6 4 21 1,

2 2nURIE R −
= = = =

it is true
	 Assume that the assertion of the theorem is true 
for all k, 6 ≤ k ≤ n
	 We want to show it is true for n + 1
Case 1. If n is even
In this case, we have show in Lemma 3.3.2 the

( ) ( )1n nURIE R URIE R +=
By induction hypothesis, we have

( ) ( )1
4 1 5

2 2n n
n nURIE R URIE R+

− + −
= = =

Case 2. If n is even

( ) ( )1
5 5 21 1

2 2
3 1 4

2 2

n n
n nURIE R URIE R

n n

+

− − +
= + = + = =

− + −
= =

Therefore,

4 ,
2

5 ,
2

n

n if n is even
R

n if n is odd

−
=  −


In general based on [7], Hasse diagrams 21 to 24, conjecture 
above, Lemma 3.3.1 and 3.3.2 and theorem 3.3.2 we can 
conclude that nR  admits EL-labeling which is EL-shellable.

4. Conclusion and Open Problems
4.1 Conclusions
	 We began by reviewing some basic concepts 
of partial order set(poset), Hasse diagram, integer 
partition and set partition. Then we went to 
pointed integer partition by defining, listing the 
pointed integer partitions and the Hasse diagram 
based on their cover relation, thus we got the 
cardinality of pointed integer partition for 1 ≤ n ≤ 
10 from those the pointed integer partitions where  
n = 1 and n = 2 are trivial and for n = 3 and n = 4 are 
studied by [8] the rest

5

6

7

8

9

10

19

30

45

67

97

141 .

I

I

I

I

I

I are new results

•

•

•

•

•

•

=

=

=

=

=

=

	 While when we went to shellability of pointed 
integer partition, we have discussed the basic 
concepts of lexicographic shellability, EL-labeling, 
shellability, cardinality and the Hasse diagram of nR  
following the publication of [1], [3], [4] and [8], and 
again to verify and prove the conjecture of [7] we 
have defined , ,n n RnI R µ•  and 

In
µ

•  and new results 
done, i.e.
(i) To get maximum chain of nR  for n = 6 and n = 7 
no need of assign the remaining unassigned right 
inclined edges by 2

n  or 1
2

n +  based on whether n is 
even or odd respectively, but for n ≥ 8 there needed 
to assign 3 on the remaining unassigned right 
inclined edges between 1111 121 1111 13and  .
(ii) For 3 ≤ n ≤ 5 there is no unassigned right inclined 
edges.
(iii) For n = 6 and 7 there is one unassigned right 
inclined edges.
(iv) For n = 8 and 9 there are two unassigned right 
inclined edges.
(v) For n = 10 and 11 there are three unassigned right 
inclined edges.
(vi) For all non-negative integer n, n ≥ 6 the cardinality 
of unassigned right inclined edge of

4 ,
2

5 ,
2

n

n if n is even
R

n if n is odd

−
=  −

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(vii) The cardinality of nR  is equal to 2n, for n ≥ 1
4.2 Open Problems
1) Is there recursive formula for nI •  where n ≥ 1?
2) Is there a relationship between the Hasse 
diagrams of nI •  with no 0̂  and 1̂  with respect to 
theory of graph?
3.) Prove
i)	For n ≥ 8 by assigning 3 on the remaining 
unassigned right inclined edges of nR  between 
1111 121 1111 13and   we have got maximum 
chain.
ii)	To get maximum chain of nR  for n = 6 and n = 7 
no need of assign the remaining unassigned right 
inclined edges.
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