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Abstract: Background: In preparation for a cervical device study (CDS) we developed a 
software-based surrogate model in order to analyze pre- and postoperative segmental 
range-of-motion (ROM) and help determine the optimal height of cervical implants. Besides 
eliminating surgeon’s bias during intraoperative device-height choice, this software-based 
approach to spinal implantation surgery aims to reduce postoperative neck pain. In this 
study we evaluated the feasibility of using this surrogate model to determine changes 
in pre- and postoperative segmental motion characteristics independent of surgeon-
related bias of device-height choice. Methods: The software’s surrogate model is based on 
videofluoroscopic movement recordings in addition to conventional radiographs recorded 
during standardized movements. Software-based evaluation of segment-specific range-
of-motion (ROM) characteristics was based on the newly introduced surrogate parameter 
“biokinemetric triangle”. Depending on changes of the triangles surface area during pre- 
and post-operative analysis, segment-specific ROM were determined and evaluated with 
regards to surgery-related ROM changes. Structural pattern recognition was employed 
to examine whether biokinemetric triangle based ROM analysis is able to discriminate 
between different implants. Results: The surrogate parameter biokinemetric triangle software 
plug-in allows detection of implant-specific functional alterations of segmental movement 
characteristics (p<0.05). It is a valuable follow-up parameter for the investigation of changes 
in the segmental motion characteristics after device implantation. Conclusions: Biokinemetric 
triangle analysis displays segmental motion characteristics and detects segmental changes 
after device implantation in CDS. Common range of motion (ROM) analysis based on 
angular observations requires complete movement execution in order to make significant 
comparisons, whereas the triangle-based analysis allows movement characterization 
independent of complete execution.

Keywords: cervical discectomy, cervical prosthesis, cervical cage, biokinemetric triangle, 
segmental range of motion

1. Introduction
	 Recently, the German Patent and Trademark Office (DPMA) has disclosed 
"Biokinemetrie" as a procedural method for creating improved prosthetics in spinal 
degeneration by the example of a medial interspinous device, designed to support 
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the facet joints [23, 27]. Biokinemetrie defines 
the mathematical decryption of physiologic 
segmental movement, which may allow functional 
replacement of a vertebral motion-segment with 
a prosthetic device [7, 30, 32, 33, 34]. One possible 
use for the functional replacement of a spinal 
segment could be the desire to avoid iatrogenic 
adjacent level disease after stabilizing surgery. 
However, whether iatrogenic adjacent level disease 
really exists is currently still debated [26]. In order 
to find the answer to this question we recently 
started a cervical device study (CDS), which 
consists of two parts (PNS study NCT02936765 and 
PNR study NCT02936739) [24]. In the PNS study, 
mono-segmental cervical discectomy is followed 
by either implantation of an Elastic Spine PADTM 

(FH Orthopedics®, France) or the implantation of 
a polyetherketoneketone (PEKK) cage (SqualeTM 

manufactured by OSD® orthopaedic & spine 
development, France). In the PNR study, mono-
segmental cervical discectomy is followed by 
either implantation of an Elastic Spine PADTM or 
implantation of a cervical prosthesis (RotaioTM 

manufactured by Signus®, Germany). The three 
devices used in the two studies are technically 
different. The PEKK cage is expected to induce 
rigid bony fusion, the Elastic Spine PADTM can be 
considered as an elastic cage resulting in dynamic 
rigidity of the implanted segment, and the RotaioTM 

prosthesis is based on a slipping hinge joint and 
may therefore preserve segmental movement in a 
mechanically pre-defined manner. The underlying 
hypothesis of the study is: if the segments adjacent 
to the implanted devices degenerate significantly 
different during follow-up this would be due to 
device-specific differences [29]. Primary clinical 
endpoint of the studies is the Neck Disability 
Index. However, since postoperative neck pain is 
significantly influenced by implant-height [15], 
we aimed to eliminate this bias via preoperative 
software-based objective determination of the 
optimal device height for each patient. Therefore, 
the simulation software introduced in the current 
study was designed to propose the height of 
the implant and takes into consideration the 
current state of degeneration in order to avoid 
device-induced overcorrection [3, 4, 6, 9, 28, 31]. 
The algorithm of the software is hereby based 
on the assessment of predefined standardized 
spinal videofluoroscopic movement recordings, 

which were interpreted as cinematographic 
investigations [1, 2, 13, 16, 19]. During assessment 
of patients, the software can then combine these 
predefined datasets with data acquired from 
standard movement radiographs (extension, 
neutral and flexion) in order to approximate 
patient-specific segmental ROM and suggest 
the implants optimal height. Postoperatively 
the same software-based evaluation is used for 
follow-up evaluation of surgery-related changes of 
segmental ROM, thereby also allowing continuous 
improvement of the software’s algorithm with the 
ultimate goal to improve patient outcome.

2. Method
	 To describe the functional alteration of adjacent 
levels after implantation of a specific device the 
surrogate parameter “biokinemetric triangle” was 
integrated into the software. This element has 
already been shortly mentioned in a previous 
proceeding [26]. Hereby, the triangle’s baseline 
is defined by the lower vertebra’s upper plate 
and reaches from the leading edge of the lower 
vertebra (1st point) to the ascending lateral facet 
(2nd point). The 3rd point is defined by the rear 
edge of the upper vertebra at the roof of the 
neuroforamen (Fig. 1). Because its baseline is 
fixed, the triangle only changes its height during 
movement. The change of the triangles’ height 
defines the movement of the 3rd point at the 
roof of the neuroforamen with respect to the 
underlying vertebra, thus characterizing the 
segmental movement pattern. The characteristic 
curves displayed in the diagram (Fig. 2) result 
from the change of the triangles’ surfaces area 
(Fig. 3) during the spine’s movement (Fig. 4) and 
indicate (from left to right) changes in segmental 
motion from extension (left) to flexion (right). To 
further define inter-segmental communicating 
movement patterns, the algorithm additionally 
calculates the ratio between ΔS and the percentile 
segmental position within the total movement-
sequence (ΔS / Δ%). The software determines the 
triangles surface every 2.5% of the full movement-
sequence, thus movement characteristics of each 
segment are represented by three real (extension, 
neutral and flexion) and thirty-eight virtually 
calculated measurements. 
	 Software-based cervical movement measure-
ments are performed in all patients of the CDS pre-
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Fig. 1: Definition of the triangle configuration for biokinemetric characterization of the segment.

 

 
Fig. 2: Movement characteristics of the different levels expressed via change of the triangle’s surface.

 
Fig. 3: Segmental projection of the triangles which generate the curves in Fig. 2 due to the change of their surface area during the move-

ment. Preoperative values of respective triangles, before implantation of SqualeTM in C5/C6.
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Fig. 4: Preoperative movement-simulation of the considered spine with common range of motion analysis.
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operatively and will be acquired at three-month, at 
six-month and at one year following surgery, there-
by assessing in detail the inter-segmental com-
munication after device implantation. Structural 
pattern recognition is used to investigate whether 
the biokinemetric triangle analysis is able to dis-
criminate between different implants with regards 
to patient-specific changes in adjacent segmental 
motion.
	 The decisive advantage of the biokinemetric 
triangle is that motion characteristics can be 
compared with each other at different examination 
times even when the motion is not performed in 
full completion [24, 25].

3. Results
	 A Software-based evaluation of cervical anatomy 
and movement-patterns helped the surgeon to pre-
operatively determine the implants device height. 
Preliminary follow-up via the software’s biokine-
metric triangle plugin additionally demonstrated 
significant changes in postoperative segmental 
movement characteristics (p<0.05). Moreover, the 
recorded postoperative data demonstrates device-
specific changes of adjacent level ROM, which prop-
agated over several adjacent levels (Fig. 5 in com-
parison with Fig. 2). The biokinemetric triangle was 
validated as an appropriate surrogate parameter for 
monitoring the change of segmental functionality 
in the follow-up of CDS patients (Fig. 6, 7).

Fig. 5: 3-month follow-up after implantation of SqualeTM in C5/C6.

 

Fig. 6: 3 month follow-up after implantation of RotaioTM.
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Fig. 7: Before implantation of RotaioTM in C5/C6.  B: 3-month follow-up after implantation of RotaioTM in C5/C6. C: 6-month follow-up. The 

triangle’s consideration is able to identify the implanted device via pattern recognition based on the displayed changing motion charac-

teristics. In the case of the RotaioTM prosthesis, this alteration is particularly pronounced (B). Therefore, in the further course (C), there is a 

physiological restriction of the non-physiological movement and consequent increasing stress in the adjacent segments.

 

4. Discussion
	 In this study we introduce the biokinemetric 
triangle and demonstrate several representative 
examples of a software-based approach to assess 
cervical anatomy and segmental motion patterns, 
helping surgeons during preoperative device choice 
and postoperative functional follow-up. We outline 
the fact that cervical device implantation leads to 
significant changes in postoperative movement 
characteristics not only in the operated, but also in 
adjacent segments and further found that changes 
propagated over several adjacent levels. Patient-
specific segmental degeneration may require 
patient-tailored device choices, with the intent to 
restore segmental movement patterns as close as 
possible to physiological ROM and prevent long-
term disability. The ability to integrate software-
based ROM-analysis into the surgical preparation and 
follow-up therefore presents a valuable opportunity 
to help surgeons as well as device-manufacturers to 
objectively optimize device-choice and -properties 
according to patient-specific needs. 
	 The human spine is a complex structure of 
mechanically-linked segments, in which segment-
specific ROM is determined by composite-
movement patterns thereby differing from most 
other joints of the body. Software-based analysis 

using the biokinemetric triangle is able to display 
movement characteristics without confusing angle 
considerations and aims to describe segmental 
movement by focusing analysis on a single point 
at the roof of the neuroforamen (3rd point, height 
of triangle) [25]. The bony real analog of this 
point of interest moves around the nerve root in 
a specific manner, which could be described as 
a slipping or translational movement due to it’s 
instantaneous center of rotation [30]. Physiologically, 
this movement-pattern prevents nerve-root 
impingement at the neuroforamen. In comparison 
to common ROM analysis, which is based on angular 
observations, the biokinemetric triangle based 
observation does not require complete movement 
execution. In the CDS the biokinemetric triangle 
plugin is currently used to characterize cervical 
movement based on sagittal imaging data only. 
However, in order to further extent accuracy during 
movement analysis and device-specific prediction 
of postoperative ROM changes, it will likely be 
beneficial to further integrate the anterior-posterior 
(a-p) plane into the biokinemetric analysis [26]. 
Therefore our current software development aims 
to transition from 2D plane radiographic analysis to 
3D computed tomography based data acquisition 
[22].
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5. Conclusion
	 The aim of the introduction of the biokinemetric 
triangle is to mathematically approximate the 
movement patterns of the spine in order to facilitate 
an improved spinal prosthetic restoration [23]. Even 
though our preliminary CDS data demonstrates that 
there are device-specific changes in postoperative 
segmental and adjacent level ROM, it is currently 
too early to determine whether these variations 
will translate into significantly different radiological 
and clinical courses of degeneration. Long-term 
patient follow-up will help to further improve the 
software’s algorithm and determine it’s predictive 
value regarding patient-outcome.
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