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Abstract: We compared a single beat isointegral P wave map with three specially selected 
isopotential P wave maps of each subject using Pearson correlation coefficient to find out 
whether it is possible to substitute an isointegral P wave map with any suitable isopotential 
map. The best correlation between the isointegral map and the isopotential maps was at the 
instant of the highest maximum during the P wave, the worst correlation was at the instant 
of the lowest minimum during the P wave. The men’s maps correlated significantly better 
than the women’s maps. Our results showed that the supposed substitution is possible in 
healthy subjects at selected instants. 
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1. Introduction
	 Electrocardiographic body surface mapping is a non-invasive method that gives 
information about electric activity of the heart that cannot be obtained from the 
standard 12-lead electrocardiograms. The mostly used outcome of this method is 
in form of maps – two-dimensional or three-dimensional graphs displaying the 
electric potential distribution over the chest surface in a single instant (isopotential 
maps) or during longer time intervals (isointegral maps representing voltage-time 
integrals) [1]. 
	 Although roughly 3 000 of papers are registered in the PubMed database 
concerning body surface potential mapping, only approximately 5 % of them deal 
with atrial activation. This can be caused by the fact that it is sometimes difficult to 
register, to evaluate and mainly to interpret the P waves. 
	 According to a study of over 1 450 apparently healthy Caucasian adults, the 
amplitude of a P wave obtained from standard chest leads V1 to V6 varies between 
-0.169 mV and 0.169 mV [2]. When using usual voltage calibration (1 mV / 10 mm), 
the “height” of waves would be less than 2 mm. Because of such low amplitudes, it 
is sometimes very difficult to find the exact onset (beginning) and the exact offset 
(end) of a P wave as the noise may influence their setting very much. These time 
instants may change by more milliseconds (ms) when using different algorithms, 
for example, a root mean square signal for all electrocardiograms or a sequence 
of isopotential maps. As the P waves are relatively flat, even a small shift of the 
beginning and/or the end of the wave may influence the form of isointegral maps 
that are used for clinical purposes [3 – 5].
	 The aim of this study is find out whether the P wave isointegral maps correlate 
with selected isopotential maps to such extent that they might be substituted with 
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appropriate isopotential maps evaluated in such 
selected time instants that are not influenced by 
the beginning and/or the end of the wave.

2. Experimental Section
	 We studied body surface maps in 40 healthy young 
adults (20 women, 20 men; 18 – 19 years old). The 
studied subjects had no history of cardiovascular 
diseases and revealed abnormal findings neither 
in the standard 12-lead electrocardiograms, nor in 
the M-mode echocardiograms. 
	 We recorded 24 unipolar electrocardiograms 
according to Barr in supine position (Figure 1) 
using the mapping system ProCardio [6; 7]. All data 
were filtered for 50 Hz and noise. Linear baseline 
was taken through the T-P segments in each trace. 
We established the onset and the offset of the P 
wave from the root mean square (RMS) signal

Fig. 1: Limited 24-lead system according to Barr. The positions of 24 

leads (small squares) are displayed that are used to construct a 

map in form of a 10 x 15 matrix (dots) [6].
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where Ui is the voltage in the ith lead, i = 1, 2, 3 ... N; 
N is the total number of leads in the map [1].

 

	 From the measured 24 leads, all maps were 
constructed to display the potential distributions 
in form of matrices consisting of 10 rows and 15 
columns [6]. We always compared one single beat 
isointegral map with three isopotential maps of 
each subject using Pearson correlation coefficients 
r [8] at the instants of the highest maximum in 
the sequence of isopotential maps (MAX), of the 
lowest minimum in the sequence of isopotential 
maps (MIN), and of the maximal RMS value during 
the total P wave, as these instants can be defined 

unambiguously from the onset/offset of the wave
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where Ii is the voltage-time integral in the ith 
lead, I  is the average value of the voltage-time 
integrals in the isointegral map, Ui is the voltage in 
the ith lead, U  is the average value of the voltages 
in the isopotential map, i = 1, 2, 3 ... N; N is the total 
number of leads in the map [1].

3. Results and Discussion
	 The mean duration ± standard deviation (range) 
of the P waves was 85 ms ± 12 ms (59 ms – 105 ms). 
Individual single beat isopotential maps revealed 
mainly smooth bipolar distribution of positive and 
negative time integrals (Figure 2 – upper part), with 
maxima located mainly on the left anterior chest 
and minima in right clavicular area or around the 
right shoulder, in good agreement with published 
data [3; 4; 9; 10]. The group average isointegral 
map maximum was 4.7 mV∙ms ± 1.5 mV∙ms  
(2.4 mV∙ms – 8.3 mV∙ms), group average isointegral 
map minimum was -3.7 mV∙ms ± 1.7 mV∙ms  
(-7.4 mV∙ms – -1.3 mV∙ms), group average root mean 
square signal (for each subject averaged throughout 
the total wave duration) was 2.3 mV∙ms ± 0.8 mV∙ms 
(1.1 mV∙ms – 4.0 mV∙ms). 
	 Although the isopotential maps distribution 
resembled that of the isointegral map (Figure 2), 
some multipolar distribution occurred in P wave 
isopotential maps with a secondary maximum often 
on the back, again in good agreement with published 
data [1; 11 - 15]. The group mean highest isopotential 
map maximum was 0.101 mV ± 0.027 mV (0.057 mV 
– 0.188 mV), the group mean lowest isopotential 
map minimum was -0.090 mV ± 0.032 mV (-0.166 mV 
– -0.036 mV), the group mean maximal root mean 
square signal in isopotential maps was 0.051 mV ± 
0.015 mV (0.027 mV – 0.091 mV).
	 The best mean correlation between IIM P and 
IPM P was at the MAX instant: 0.958 ± 0.036 (0.871 
– 0.997). The mean correlation at the maximal RMS 
instant was 0.957 ± 0.038 (0.842 – 0.997). The worst 
correlation was at the MIN instant: 0.952 ± 0.051 
(0.738 – 0.997), where the men’s maps correlated 
statistically significantly better than the women’s 
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Fig. 2: An example of an isointegral P wave map (on the top) and selected isopotential maps from the same subject (a 19 years old man) at the instants MAX, 

MIN, and RMS (from left to right). Each rectangle represents the chest with the left half corresponding to the anterior chest and the right half 

corresponding to the back. The step between isointegral lines is 1 mV∙ms, the step between isopotential lines is 0.02 mV; negative isolines 

are blue, positive isolines are red, zero isoline is thicker and green. The numbers over the maps are the time instant of the isopotential 

map, minimum (-) and maximum (+). Correlation coefficients between the isointegral map and the corresponding isopotential maps are:  

r
MAX 

= 0.871, r
MIN

 = 0.973, and r
RMS

 = 0.885.

did: 0.970 ± 0.023 (0.913 – 0.997) versus 0.934 ± 0.064 
(0.738 – 0.987), p < 0.05. All obtained correlation 
coefficients were statistically significantly different 
form zero value (p < 0.001) [8].
	 Our study was inspired by the fact that P waves 
are low-amplitude deflections that might be largely 
influenced by noise. This occurs mainly in single-beat 
isopotential maps. The noise as a random influence 
can be suppressed either by using average cycles or 
by using isointegral maps, which emphasise small 
but long lasting events. On the other side, because 
of the noise, it is difficult to set the exact onset 
and the exact offset of the wave. Unfortunately, 
averaged maps may suppress some important 
features connected with a single beat. This seems to 
be a vicious circle between the isointegral and the 
isopotential P wave maps and we tried to cut it.
	 A similar study was performed in 1985 in a group 
of 20 – 24 years old healthy young men using the 
32-lead system by Lux [16]. Comparable results were 
obtained.

4. Conclusions
	 We found that the isointegral P wave maps 
correlate very high with the isopotential P wave 
maps at selected time instants. Therefore, it is 
possible to substitute the isointegral map with 
an isopotential map in healthy people at the 
mentioned instants, mainly at the instant of the 
highest P wave maximum and/or at the instant of 
the highest root mean square value. We assume that 
in such cardiovascular disease which are projected 
into the P wave (for example, even left ventricular 

hypertrophy [17]), the correlation will be different. 
But this needs further studies.
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