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Abstract: An adaptive quadratic polynomial neural unit (QNU) controller for optimization 
of a conventional Smart Microgrid control loop is studied and proposed. The parameters 
associated with the studied grid plants are considered to be known in this study, with the 
fact that the load is unknown and time-variant. A sample-by-sample real-time recurrent 
learning algorithm of an additional QNU controller is derived, with its performance tested 
and discussed as a result of this paper.
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1. Introduction
	 Smart Grids (SGs) can be deemed as rather complex, large systems, in which 
smart control is one of the necessary conditions for SG realization (Neuman, 
2011, 2012, 2014). In late 1990's, the main issues related to Distributed Grids (DG), 
nowadays referred to as MicroGrids, were widely considered by the working groups 
of the International Council on Large Electric Systems (CIGRE) and the International 
Conference and Exhibition on Electricity Distribution (CIRED) in their review reports 
(Chowdhury et al., 2009).
	 Smart control methods and other tasks in SGs often involve computational 
intelligence tools such as artificial neural networks (Mori and Awata, 2006) or fuzzy 
logic (Bevrani et al., 2012). MicroGrids (MGs) are subsystems of complex Smart 
Grids. Till now, Phasor Measurement Unit (PMU) technology is often categorized 
as a significant tool to implement Smart Grids (Mitani et al., 2014). With regards to 
their control techniques, adaptive reference model approaches have proven their 
relevance as such in the works (Gibson et al., 2013; Narendra and Valavani, 1979). 
A key contribution of this paper is the introduction of a novel closed-loop model 
reference adaptive control scheme. For efficient real-time learning algorithms as 
such that of the gradient descent algorithm (GD) and the Levenberg-Marquardt  
(L-M) batch training algorithm, higher order neural units (HONUs), have proven to be 
computationally efficient in achieving adequate convergence in square error whilst 
achieving desirable control performance for both non-linear unknown systems as 
well as linear systems of SISO structure. The conception of quadratic neural units (i.e. 
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Fig. 1: Closed loop of Smart Micro Grid part as given in Fig.1 with details in Tab. 1 (adopted from (Bevrani et al., 2012)).

a second order HONU) along with their application 
to both linear as well as non-linear engineering 
processes have been studied throughout the 
works (Bukovsky et al., 2010; Gupta et al., 2003 & 
2013). A more recent application of HONUs for real-
time adaptive control may be found in the work 
(Bukovsky et al., 2015) where HONUs were applied in 
extension to the previously employed conventional 
control loops for successful optimisation on various 
SISO engineering processes.

	 To demonstrate this novel approach for application 
to SG design, we derive the recurrent adaptation 
of a closed loop for control of a sub-component 
of a microgrid model (adopted from (Bevrani 
et al., 2012)). In this case study, two serial plants 
representing DEG, MG, FESS, and BESS subsystems 
are classically shown in a general PID closed loop 
in Fig. 1, where the individual grid components are 
generalized as known linear plant transfer functions, 
with respective parameters detailed in Table 1. 

 

Fig. 2: Models of Smart Grid part as given in Fig.1 with details in Tab. 1 (adopted from (Bevrani et al., 2012)).

 

Tab. 1: Sub-part of microgrid model configuration as adopted 

from (Bevrani et al., 2012). 
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2. Discrete Time Control Loop with QNU Controller

Fig. 3: Control loop with adaptive QNU controller in a discrete-time 

form, where d=const. and ∆ P is the immeasurable load.
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	 The discrete time model of the control loop for 
the purpose of discrete-time controller learning 
may be designed as follows. The grid frequency 
offset �f y� 2  is the output of a serial block of two 
linear plants as in Fig. 3, which may be given via the 
following relation.

( )1

where the input vector is

( )2

and where w2  is a long row vector of n n ny u2 2 2� �  
adaptive parameters (neural weights) based on 
a priori approximate of the discrete time plant 
parameters. Further, the control input u2  may be 
calculated via the following summation.
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where ∆P is the immeasurable grid load and C stands 
for other external grid input components (that are 
beyond the scope and hence, not considered in 
depth within this paper).
	 Similarly, the output of the serial two-plant block 
before the load input is calculated may be given as 
follows

y k k
1 1 1
( ) ( ),� �w x ( )4

where the input vector is
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and where w2  is a long vector of n n ny u2 2 2� � , 
based on the a priori approximate plant parameters. 
Furthermore, the control error e, may be defined as 
follows

e d y= - ,2 ( )6

where the set point d=d(t), is a constant.

	 Instead of a conventional PID controller, we 
propose an adaptively tuned quadratic neural unit 
(QNU), i.e., second-order non-linear polynomial 
controller of the following structure

q k k( ) ( )� �v col� ( )7

where the long-column vector colx of polynomial 
input terms in the sense of a QNU may be defined 
as vector

col� � �� ��� �� � � � �{ } ; ,i j y yi n j i n0 1 1
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... ... ( )8

and where the ξ ξi j,  are elements of the controller 
input vector x that is defined as follows

( )9

and v in equation (7) is the long-row vector of 
adaptable parameters with respect to the adaptive 
controller defined as follows
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Where n ny� � �2 2 . Finally, the output of the QNU 
controller (7), according to Fig. 3 multiplied with 
inclusion of an additional gain, may be given as 
follows

( )10

u k r q kq1
( ) ( ),� �

where rq is an additional (optional) static gain that 
may be incorporated for example, in cases where 
a QNU may result in large output magnitudes 
corresponding to low static gains of the controlled 
system.

3. Reference Model Design for The Closed Loop 
Scheme

	 For the adaptive closed loop scheme in Fig. 3, 
we propose the discrete time reference model via 
Z-transfer function as follows
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where its parameters Td and ro define the decay 
rate and gain respectively. To demonstrate the 
effectiveness in terms of suppression to an 
introduced disturbance. Fig. 4 illustrates the 
step responses of the designed reference model 
to an introduced disturbance under various 
configurations of decay rate and gain.

Fig. 4: Step responses of the closed loop reference model (12) to a 

disturbance ∆P under various configurations.

 

4. Controller Learning Rule
	 The parameters of the QNU controller are 
proposed to be adapted by the gradient descent 
learning rule as

v v v( ) ( ) ,k k� � �1 � ( )13

where we adaptively enforce the control loop (Fig. 
3) to adopt the behavior of the reference model (12) 
as follows
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where the partial derivatives of control input u2  in 
x2 are according to (3) and Fig. 3 as follows
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because neither C nor ∆P depends on the QNU 
controller weights v. In (16) we can see that the 
unknown load, when assumed as the additive 
perturbation (3), does not affect the learning rule of 

the QNU controller.
	 Further derivations from (16) follow as

where according to (7)
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where the quadratic term derivatives may be 
calculated as follows
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	 Finally the partial derivatives of vector x may then 
be given as follows
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that recurrently develop from zero initial conditions 
via (15) - (20).

5. Closed-Loop Performance of the Proposed 
Adaptive Control

	 This section illustrates the resulting adaptive 
controller tuning in a closed loop and compares 
the controller performance of a linear adaptive 
controller in Fig. 5 and of quadratic non-linear 
controller (QNU) in Fig. 6. From the two figures, it 
can be concluded that the algorithm results in 
an adequate convergence of both architectures 
towards the desired reference model set point 
values. With the quadratic neural unit architecture 
in particular, exhibiting smoother adhesion to 
the desired reference model under introduced 
perturbations in comparison to the LNU controller 
output.
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6. Conclusions 
	 Throughout this paper, a novel approach of 
model reference adaptive control via a quadratic 
polynomial neural unit (QNU) controller for control of 
Power Systems in a closed loop, with immeasurable 
load and constant set point was presented. The 
potentials of which is of utmost importance 
and relevance towards Smart Microgrid control 
applications. The presented simulation results 
have shown that learning (adaptation) extends in 
a closed loop and also converged for a non-linear 
controller architecture. These results demonstrate 
the correctness of the chosen development 
direction and authorizes the necessity for further 
research within this field. The resulting sampling of 
the whole discrete closed control loop of the 50Hz 
phasor model is 0.1 sec, which correlates to the 
speed of whole system response, further justifying 

Fig. 5: Step response of a closed control loop to disturbance steps 

∆P during last adaptation epoch of (non-linear) QNU controller.

 

 

Fig. 6: Step response of a closed control loop to disturbance steps 

∆P during last adaptation epoch of LNU controller.

the applicability of the method. An aim for further 
research, is directed towards a comparison of linear 
versus non-linear controllers from the viewpoint of 
control quality for different controlled systems and 
operating conditions.
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