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Abstract: The Membrane stiffness, Young’s moduli, Poisson’s ratio and eigenfrequencies are 
investigated in this paper. Graphene sheet is modelled by beam elements. The properties 
of these elements are directly derived from interatomic potentials. Graphene sheet is 
modelled with commercial finite element code and the boundary conditions are applied in 
two different directions. From these simulations the membrane stiffness C, Young’s modulus 
Y and the Poisson's ratio μ of the graphene sheets are obtained. Then the first twenty 
eigenfrequencies of the graphene sheets are investigated.
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1. Introduction
	 Graphene is a two-dimensional hexagonal (honeycomb) lattice made of carbon 
atoms which size is in nanometers. Materials in nanometers are widely investigated 
for their extraordinary properties. Researches study their mechanical properties 
and their applications in classic materials. Young’s modulus, tensile or compressive 
strength, eigenfrequencies and buckling are investigated by number of researchers. 
Intensive research is also oriented to the application of nanostructures in electrical 
and chemical engineering, as well as in biological sciences [1].

2. Molecular Mechanics
	 Membrane stiffness, Young’s modulus and Poisson’s ratio is calculated from 
deformation of graphene sheet but at the beginning the knowledge of beam 
element parameters is necessary. For this sake we define connection between 
molecular mechanics and structural mechanics [2], [3]. Molecular mechanics 
approach is commonly used for modeling graphene sheets. However, this method 
and supercomputers can simulate the behavior of carbon nanotubes only with 
small lengths (several micrometers). Determining of solution is also a considerably 
time-consuming process. Therefore, using FEM to describe the behaviors of 
graphene sheets is better than using molecular mechanics. Graphene sheets 
modeling can be realized by different types of finite elements, i.e., truss, beam, 
linear and nonlinear spring, and shell elements.
	 In molecular mechanics graphene sheet can be regarded as a large molecule 
consisting of carbon atoms and the atomic nuclei as material points. Motions of 
atomic nuclei are regulated by a force field, which is generated by electron-nucleus 
interactions and nucleus-nucleus interaction and the force field is expressed in the 
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form of steric potential energy [4]. The total steric 
potential energy [5]-[10] omitting the electrostatic 
interaction, is a sum of energies due to valence or 
bonded interactions and non-bonded interactions 
and is expressed as

( )1,U U U U U Utotal r vdw= + + + +i z ~/ / / / /

where , , , ,U U U U Ur vdwi z ~  are a bond stretch 
interaction, a bond angle bending, a dihedral angle 
torsion, an improper (out of plane) torsion, a non-
bonded van der Waals interaction, respectively. 
Representations of these interactions are given in 
Fig. 1 [6], [11]-[12].

 
Fig. 1: Interatomic interactions in molecular mechanics [2].

	 The main contributions to the total steric energy 
come from the first four terms of equation (1). 
Under the assumption of small deformation, the 
harmonic approximation is adequate for describing 
the energy [5]. By adopting the simplest harmonic 
forms and merging dihedral angle torsion and out-
of-plane torsion into a single equivalent term, we 
can write relations
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the bond angle change and the angle change of 
bond twisting, respectively [2]-[3].
	 To calculate the elastic moduli of beam elements 
we determine relations between the sectional 
stiffness parameters in structural mechanics and the 
force constants in molecular mechanics. 
	 The sections of beams which represent carbon-
carbon bonds are assumed as identical, circular 
and moments of inertia are .I I Ix y= =  Than we 
get three stiffness parameters ,EA EI  and GJ 
from linkage among the energy terms in molecular 
mechanics and continuum mechanics as
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Fig. 2: Tension, beneding and torsion of an element.
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where , , , , ,k k k rr a zD D Di x  are the bond stretching 
force constant, bond angle bending force constant, 
torsional resistance, the bond stretching increment, 

where UA is the strain energy of a uniform beam 
of length L subjected to axial force N, dL is axial 
elongation, UM is the strain energy of a uniform 
beam under bending moment M, a is the rotational 
angle at the ends of the beam, UT is the strain 
energy of a uniform beam under tension T and db is 
the relative rotation between the ends of the beam 
(Fig. 2) [2]-[3].

	 Thus by comparing equations (2)-(4) and (5)-(7) 
we get terms
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	 Then beam element (Fig. 3) is adopted and its 
elastic properties for further analysis are

 

Fig. 3: Space frame structure.

where constants , , ,k k k Lr i x  are .k 6 52 10 Nnm ,r
7 1$= - - , 

.k 8 76 10 Nnmrad ,10 1$=i - - , .k 2 78 10 Nnmrad10 2$=x - -  
and .L a 1 421 nmC C= =-  [3].
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graphene sheets are obtained.
	 The membrane stiffness C is obtained from 
equation

where Y is the Young’s modulus and t is the 
thickness of graphene sheet. The Young’s modulus 
is ratio of normal stress to normal strain obtained 
from equation

	 Terms in (9) are calculated and we get diameter 
. ,d 0 147 nm=  elastic moduli .E 5 4875 TPa=  and 
.G 0 871TPa=  for beam elements.

3. Structural Analysis
	 The numerical computations are accomplished 
by commercial program Ansys. Graphene sheet 
is modelled as frame structure by beam elements 
which have had parameters mentioned above. 
Carbon atoms are considered to be nodes in structure 
and the nodes are joined by beam elements. The 
structural response of the graphene sheets under 
axial loads is analyzed. To simulate the uniaxial load, 
one side of the graphene sheet is restrained in axial 
direction with lateral displacements being allowed. 
The graphene sheets are stretch by applying an axial 
force on the opposite side. The finite element analysis 
is performed for two different boundary conditions 
(graphene sheet rotated by 90°) and from this we 
get two different chiralities of graphene sheets. 
From these simulations the membrane stiffness C 
Young’s modulus E and the Poisson's ratio m of the 

where , , ,F A H H0 0D  are total force applied on 
graphene sheet, the cross-section of graphene 
sheet, the elongation of graphene sheet and the 
initial length of graphene sheet, respectively. A0 
is equal ,W t0 $  where W0 is the initial width of 
graphene sheet. When equation (11) is substituted 
to equation (10) we get membrane stiffness 
independent on thickness of graphene sheet. 
	 The Poisson’s ratio of graphene sheet is calculated 
from equation

where WD  is constriction of graphene sheet.
	 When the thickness t of graphene sheet is the 
same as diameter d of the beam element [11], then 
Young’s moduli and Poisson’s ratios are computed 
and some results are given in Table 1.
	 All computed Young’s moduli are shown in Fig. 4. 
It is clear that Young’s moduli of graphene sheets 
increase slightly with the size of the sheets and 
depends on the chirality.
	 Poisson’s ratio for graphene sheet is computed 
from equation (12) and corresponding charts are 
shown in Fig. 5.
	 Some authors use in equation (11) in term A0 for 
t value 0.34 nm, which is the interlayer spacing of 
graphite. In Table 2 are given new values of Young’s 
moduli of graphene sheet and corresponding 
dependencies.
	 Variation of the Young’s modulus is shown in Fig. 6.
	 Finally, in Fig. 7 is shown membrane stiffness, 
which is independent on thickness of graphene 
sheet.
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Table 1: Young’s moduli for different dimensions of graphene sheets.

Direction of loading Dimensions of graphene sheet Young’s modulus Poisson’s ratio

1. W0 (Å) H0 (Å) Y (TPa) µ (-)

19.894 56.608 2.57065 0.06046

19.894 118.139 2.58394 0.06177

19.894 177.209 2.58826 0.06239

19.894 238.740 2.59025 0.06244

19.894 297.810 2.59130 0.06247

41.209 56.608 2.47216 0.0590

41.209 118.139 2.49039 0.05912

41.209 177.209 2.49581 0.05930

41.209 238.740 2.49863 0.05978

41.209 297.810 2.49952 0.060

2. 24.612 53.998 2.37659 0.080

24.612 113.680 2.38598 0.0812

24.612 173.362 2.38904 0.0816

24.612 233.044 2.39045 0.0818

24.612 292.726 2.39128 0.0820

 

Fig. 5: Variation Poisson’s ratio with change length of graphene sheet.

 

Fig. 4: Variation Young’s modulus with change length of graphene sheet.
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Table 2: Young’s moduli for different dimensions of graphene sheets.

Direction of loading Dimensions of graphene sheet Young’s modulus Poisson’s ratio

1. W0 (Å) H0 (Å) Y (TPa) µ (-)

19.894 56.608 1.1114 0.06046

19.894 118.139 1.1172 0.06177

19.894 177.209 1.1190 0.06239

19.894 238.740 1.1990 0.06244

19.894 297.810 1.1204 0.06247

41.209 56.608 1.0688 0.0590

41.209 118.139 1.0767 0.05912

41.209 177.209 1.0791 0.05930

41.209 238.740 1.0803 0.05978

41.209 297.810 1.0810 0.060

2. 24.612 53.998 1.0275 0.080

24.612 113.680 1.0316 0.0812

24.612 173.362 1.0329 0.0816

24.612 233.044 1.0335 0.0818

24.612 292.726 1.0339 0.0820
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Fig. 7: Variation membrane stiffness with change length of graphene sheet.

 

Fig. 6: Variation Young’s modulus with change length of graphene sheet.
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4. Modal analysis
	 The eigenfrequencies are very important 
parameters of those structures because their 
measurement can serve as a base for the 
determination of elastic properties, e.g., Young’s 
modulus of homogenized materials. Modal analysis 
is performed by commercial code in Ansys APDL. 
Carbon atoms are joined by beam elements with 

mass density r = 2250 kg/m3 and carbon atoms 
are considered to be mass elements with mass 
2 10 kg.26$ -  The two limitless boundary conditions 
are considered i.e. all edges of graphene sheet is free 
(FFFF) and all edges are clamped (CCCC). The first 
twenty eigenfrequencies of the graphene sheets 
with length 30 Å, 300 Å and 900 Å are computed 
and these are shown in Fig. 8 – Fig. 10.

 

Fig. 9: Eigenfrequencies of graphene sheet with length 300 Å.

 

Fig. 8: Eigenfrequencies of graphene sheet with length 30 Å.

 

Fig. 10: Eigenfrequencies of graphene sheet with length 900 Å.



32 VOLUME 21, No. 3, 2017

5. Conclusions
	 A linkage between molecular mechanics and 
structural mechanics has been proposed. For the 
computation is used finite element model with 
beam elements of proposed diameter and elastic 
properties (Young’s moduli). This model is based 
only on beam elements that represent C-C bonds 
and joints that represent carbon atoms. The beam 
connects individual atoms (joints). Analysis has 
been performed on graphene sheets with different 
dimensions like width, length and with two different 
loading directions. The same boundary conditions 
were applied consecutively to two mutually 
perpendicular directions.
	 This model was used for evaluation of Young’s 
modulus and Poisson’s ratio of graphene sheet. 
Young’s modulus is affected by dimensions, 
direction of loading of graphene sheet and Poisson’s 
ratio is affected by direction of loading of graphene 
sheet. Young’s modulus and Poisson’s ratio increase 
slightly with increasing length of graphene sheet. 
Magnitudes of Young’s modulus and Poisson’s 
ratios are comparable with results published by 
several researchers from theoretical, numerical 
(molecular, structural simulations) and experimental 
measurements.
	 The eigenfrequencies of these graphene sheets are 
investigated. The mass and the mass density of the 
carbon atoms and connections are assigned. For the 
totally fixed graphene sheets are eigenfrequencies 
two times higher and too depend on chiralities of 
these graphene sheets.
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