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Abstract: An inverse dynamics model has been designed, using control theory, 
to estimate elbow joint torque per unit moment of inertia based on a measured 
movement trajectory. The physiological parameters required by the model 
(undamped natural frequency and damping ratio of the elbow joint) were 
measured experimentally using the pendulum test at the elbow joint. Eight 
subjects participated in the experimental study, which included ten iterations 
of the standard pendulum test at the elbow joint, as well as ten iterations of 
the pendulum test with an additional known weight strapped to the wrist. 
Electrogoniometry was used to record the movement of the forearm during the 
tests, and surface electromyography of the elbow flexor and extensor muscles 
was used to ensure that the movements were purely passive. An equation was 
then derived to calculate the moment of inertia of the forearm as it rotated about 
the elbow joint. The inverse dynamics model developed in this study could be a 
useful tool for clinicians in analysing kinematics in patients with neuromuscular or 
orthopaedic disease.
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1. Introduction
	 Inverse dynamics models are commonly used to predict joint torque based on 
measurements of joint position. Inverse dynamics has been used as a noninvasive, 
convenient method to improve the sensitivity of clinical motion analysis in patients 
with cerebellar lesions [15], Parkinson’s disease, spasticity and orthopaedic injury 
[7,8]. It has also been used to improve adaptive control of neuroprostheses [16]. 
Furthermore, inverse dynamics could be used in the development of a dynamic 
neuromusculoskeletal model, to examine the neuromuscular or biomechanical 
effects of a change in joint geometry following total joint replacement. Provided 
accurate values for the moment of inertia, mass of body segments, position of the 
centre of gravity, undamped natural frequency and damping ratio of the joint are 
known, reliable joint torque predictions may be made. However, these values are 
not easy to obtain and reported values vary considerably [17].
	 An inverse dynamics model was developed in this study, using control theory, 
to track the net joint torque developed during elbow flexion and extension based 
on the movement trajectory of the forearm about the elbow. An experimental 
study was performed, which allowed the moment of inertia, undamped natural 
frequency and the damping ratio of the elbow joint to be calculated easily for 
individual subjects.

2. Model 
	 The aim of this model was to estimate the net flexor torque per unit moment of 
inertia, 

I
Tf , based on the measured movement trajectory, th{ ] g, as illustrated in 
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Figure 1. 	 By adding n h
2~ {  to both sides of equation 2, it 

may be rewritten as:

 

Fig. 1: Transfer function representation of the modelled system. 

I
T

sf
] g is the Laplace transform of the net elbow flexor torque per 

unit moment of inertia, sh{ ] g  is the movement trajectory, G s] g  

represents the linear part of the process, h h{^ h  is a nonlinear 

feedback function.

	 To address this problem, the dynamics of the 
elbow joint were first examined – the process 
model in a control systems approach. An observer 
was then designed, based on the process model, 
and finally a controller was developed. The 
resulting system should predict an accurate replica 
of the unobservable signal 

I
T

tf
] g based on the 

measured joint movement, th{ ] g. In this model, 
the upper arm was considered to be vertical, and 

h{  was defined as the angle of the forearm relative 
to the horizontal.
2.1 The Dynamics of the Elbow Joint
	 A representation of the forearm rotating about 
the elbow joint is presented in Figure 2. Assuming 
viscous friction, the equation of motion of the 
forearm is:

( )1I
d

dt
F
d

dt
mgl Th h

h f

2

2

ϕ ϕ
ϕ= − − +cos

where I is the moment of inertia of the forearm, F 
is the coefficient of viscous friction, m is the mass 
of the forearm, g is the acceleration due to gravity 
(taken as 9.81 m/s2), l is the distance of the centre of 
gravity of the forearm from the centre of the elbow 
joint and Tf  is the net elbow flexor torque.
	 By introducing the standard [3] dynamical 
indices of damping ratio g and undamped natural 
frequency n~ , equation 1 may be converted to the 
form

( )2
d

dt

d

dt

T

I
h

n
h

n h

f
2

2

22
ϕ

ζω
ϕ

ω ϕ+ + =cos

where n~  is the undamped natural frequency of the 
elbow joint, and g is the damping ratio of the elbow 
joint. These dynamical indices are defined by:

( )3ωn
mgl

I
=

( )4ζ =
F

mglI2

( )5
d

dt

d

dt

T

I
hh

n
h

n h

f

h
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22
ϕ

ζω
ϕ

ω ϕ ϕ+ + = − ( )

where the nonlinear feedback function, h h{^ h, is 
defined in equation 6.

( )6h h n h h( ) cosϕ ω ϕ ϕ= −( )2

	 By taking the Laplace transform of equation 5, 
subject to zero state initial conditions, 0 0h{ =] g  
and 

dt
d

0 0
h{

=] g , the process may be represented by 
equation 7, and Figure 3.

( )7ϕ ϕh

f

hs G s
T

I
s h( ) = ( ) ( ) − ( )







L

 

Fig. 2: Representation of the forearm rotating about the elbow.

where L denotes Laplace Transform. The linear part 
of the process, G s] g, is then characterised by the 
transfer function given in equation 8:

( )8G s
s sn n

( ) =
+ +
1

22 2ω ω

 

Fig. 3: The nonlinear process considered. G s] g  represents the linear 

part of the process, and h h{^ h  is a nonlinear feedback function.

2.2 Nonlinear Observer Design
	 A nonlinear observer was constructed, Figure 
4, driven by the measured th{ ] g, with nonlinear 
feedback function h h{^ h an accurate model of the 
linear part of the process, G s] g, and an appropriately 
tuned controller, C s] g. The state variables used in a 
Simulink implementation of the model are indicated 
using x1  to x4 .
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	 The following equation applies to the zero-state 
response:

	 Combining equations 13 and 11 leads to:

( )9

( )10

Y s C s s G s Y s hh h( ) = ( ) ( ) − ( ) ( ) − ( )( ) ϕ ϕL

L Lx X s G s Y s h h1 1( ) = ( ) = ( ) ( ) − ( )( )ϕ

	 Comparing equations 10 and 7 it is clear that if 
Y s I

T
sf

.] ]g g, then x t th1 . {] ]g g. Substituting equation 
7 into equation 9 leads to:

( )11Y s
C s G s

C s G s

T

I
sf( ) = ( ) ( )

+ ( ) ( )








 ( )

1

 

Fig. 4: The structure of the nonlinear observer. hz  is the elbow angle 

relative to the horizontal, Y is the predicted value of 
I
Tf , C s] g  is the 

controller, G s] g  is the linear process model, h hz^ h  is the nonlinear 

feedback function, , ,x x x1 2 3  and x4  are state variables.

	 Equation 11 represents the linear feedback system 
shown in Figure 5. It is clear from this that, provided 
C s] g is a good controller for G s] g, the output signal 
Y s] g  will track the input signal 

I
T

sf
] g with small error 

and so, in the time domain, the generated observer 
output signal y t] g  will be an accurate replica of the 
unknown input 

I
T

tf
] g.

 

Fig. 5: Equivalent linear feedback system relating Y s] g  to I
T

sf
] g . 

E s] g  is the error signal.

2.3 Controller Design
	 Initially, a controller of the form in equation 12 was 
chosen.

( )12C s
k s s

s

n n( ) =
+ +( )2 22ζω ω

which gave the forward path transfer function

( )13C s G s
k

s
( ) ( ) =

( )14
Y s

s

k

T

I
sf( ) =

+
( )1

1

	 Equation 14 represents y t] g  tracking 
I
T

tf
] g 

through a first order low-pass filter of time 
constant k seconds i.e., of 3 dB bandwidth k 
radians per second. Provided that k is chosen so 
that this bandwidth accommodates all significant 
frequency components of 

I
Tf , then the generated 

observer output y t] g will be a close match to the 
unmeasurable process input 

I
T

tf
] g.

	 The controller transfer function in equation 12 can 
be rearranged as

( )15C s k

s
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n

n

( ) = + +
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which is of the form
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	 Equation 16 is the classical proportional, integral 
plus derivative (PID) controller, with proportional 
gain k2 ng~ , integral action time T

2
i

n~
g

=  and 
derivative action time T

2
1

d
ng~

=  [13]. Equation 16 
cannot be implemented exactly in state variable 
form. It is necessary to approximate the derivative 
channel transfer function using the approximation 
sT aT s

sT
1d

d

d= + , where a 111 . This represents pure 
derivative action passed through a first order 
low-pass filter with time constant aTd . It can be 
implemented by a gain in cascade with an integrator 
in a feedback loop, as shown in Figure 6, through 
the following simple manipulation:
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	 The block diagram representation of the modified 
controller is shown in Figure 7. The state
variable equations describing this are:

( )19
dx

dt
k xn h

3 2
1= −( )ω ϕ
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Fig. 6: The manipulation applied to the derivative channel is 

shown here. This is necessary in order to implement the controller 

in Simulink.
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dt a
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Fig. 7: Block diagram representation of the modified PID controller.

	 The state variable equations for the process model 
are

( )22

( )23

dx

dt
x1
2=

dx

dt
x x y hn n h

2 2
1 22= − − + − ( )ω ζω ϕ

with h h{^ h defined by equation 6.
	 In the process model state variable equations 22 
and 23, x1  is the counterpart of h{  and x2  of 

dt
d h{ . 

Hence, these were initialised with x 01 =  and x 02 = . It 
is noted from Figure 7 that if 0 0h{ =] g , x 0 01 =] g  and 
if x 0 04 =] g , then y x0 03=] ]g g. However, it is readily 
seen from equation 2 that if forearm motion starts 
from rest, 

I
T

h0 0f
n
2~= =] ]g g . Therefore, x3 and x4 were 

initialised with x n3
2~=  and x 04 = .

	 The controller parameters k and a were tuned in 
this model as follows: k was tuned by increasing 
it until two successive traces of y t] g showed no 
significant change. In the control theory literature, 
the parameter a is conventionally taken as . .a 0 111  
It was found here in preliminary simulation 
experiments that the value .a 0 006=  allowed very 

close tracking of I
Tf  by y.

2.4 Experimental Procedure
	 The values of z, n~  and I were calculated 
experimentally, using the pendulum test at the 
elbow joint. The pendulum test, developed initially 
for the knee [18], is a commonly used diagnostic 
test of spasticity [4], [11], [14], and has also been 
used to measure biomechanical parameters [5] 
and investigate their variation in different patient 
populations [9], or to quantify muscle tone [10]. In 
this study, the pendulum test was used to estimate 
the damping ratio, z, the undamped natural 
frequency, n~ , and the moment of inertia, I, of the 
human elbow joint for use in modelling elbow joint 
kinematics. A similar added mass idea, resulting 
in a completely equivalent result, but derived and 
formulated independently here, was used in [12] 
to measure the moment of inertia of the lower leg 
rotating about the knee joint.
2.5 Equation of Motion
	 During a pendulum test, the equation of motion 
differs to that of the modelled system. Firstly, the 
movement should be passive, hence there is no 
muscle torque. Secondly, the forearm moves in 
the vertical plane rather than the horizontal. The 
resulting equation of motion is given in equation 
24, where {y  represents the angle of the forearm 
relative to the vertical.

( )24I
d

dt
F
d

dt
mglv v

v

2

2

ϕ ϕ
ϕ= − − sin

	 The system can be linearised, by assuming that 
{y  does not exceed 1 rad, hence sin&{ {y y. The 
linearised equation of motion is given in equation 25:

( )25I
d

dt
F
d

dt
mglv v

v

2

2

ϕ ϕ
ϕ= − −

which is equivalent to:

( )26d

dt

d

dt
v

n
v

n v

2

2

22 0
ϕ

ζω
ϕ

ω ϕ+ + =

	 The solution of this equation of motion for 
1 11 1{- y  rad and 

dt
d
0 0

{
=

o
] g , is given by equation 

27.
	 The derivative of equation 27 leads to the 
expression given in equation 28.
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	 The turning points, which correspond to dt
d

0
{
=

o , 
are given by the zeros of the sine function:

( )29ω ζ πn t m m1 0 1 2 32− = = …, , , ,

	 The solution t{y ] g is presented in Figure 8, with 
turning points for the various values of m indicated. 
The peak values , ,p p p1 2 3{ { {y y y  etc., correspond to even 
values of m, m = 0, 2, 4, 6, ...
	 From equation 27, an expression for the logarithmic 
decrement, d, may by deduced, see equation 30. 
d could also be defined using successive trough 
values.
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ϕ
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2.6 Experimental Procedure
	 Eight healthy subjects (4 Male, 4 Female; weight: 
58- 90 kg) took part in this study. The movement 
trajectory of the forearm was measured using an 
electrogoniometer, while surface EMG was recorded 
to ensure that the movement was passive. An 
electrogoniometer (Biometrics Ltd.) was attached 
using medical tape along the lateral side of the right 
elbow. The subject was asked to flex and extend their 
elbow between 1{ =-y  rad and 1{ =y  rad while the 
movement was recorded, in order to confirm that 
all joint angles could be captured. Surface EMG 
was recorded from the biceps, brachioradialis and 
triceps muscles using the Delsys Bagnoli 8 system 
(bandpass filter: 20 - 450 Hz). Skin was prepared 
by gentle abrasion and cleansing with alcohol. 
Electrodes were located according to the SENIAM 
[6] recommended locations for each muscle, with a 
fixed inter-electrode distance of 10 mm. EMG data 
was sampled at 1250 Hz, and electrogoniometer 
data at 250 Hz. Signals were then stored on a PC 
after A-D conversion (CED 1401), and analysed 
using Matlab (the Mathworks). The subject lay on 
the test bed in the prone position, and with their 
head facing to the left. Their right upper arm was 
held horizontally by a strong custom designed 
sling, which was supported by a horizontal bar. 
The right shoulder was relaxed and abducted 90° 
from the torso, so that the forearm hung vertically 
and swung freely if disturbed. The subject was 
encouraged to relax, and not to assist or resist the 
pendulum motion. The surface EMG recordings 
were monitored during the experiments to ensure 
that no active muscle force was developed. If EMG 
activity was detected during the pendulum tests, 
those recordings were rejected and repeated.
	 The forearm was lifted to an angle less than 1 
radian using a piece of string, which was tied loosely 
around the wrist, and released suddenly, so that 
the natural swing of the forearm was not interfered 
with. After the forearm swinging motion had 
stopped completely, the procedure was repeated a 
further nine times. The entire procedure was then 
repeated with a 0.45 kg wrist weight (Nike,) securely 

  

Fig. 8: The experimental set-up used during the pendulum tests. 

i: A cross-section through the subject’s chest is illustrated. The angle 

of the forearm relative to the vertical, {o, is shown for forearm 

swings in both directions. ii: A: The secure inelastic sling used to 

support the upper arm. B: The forearm hanging in its final position. 

C: Cables transmitting surface EMG and electrogoniometer data to 

an analog-digital converter for analysis.

  

( )i

( )ii
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fastened around the subject’s wrist, these tests were 
used to calculate the moment of inertia below. The 
experimental set-up is shown in Figure 8.
2.7 Data Analysis
	 A typical pendulum test output is shown in Figure 
9. All time points where 0{ =y  were first identified, 
and using these data points, the peaks and troughs of 
the curve were calculated by finding the maximum 
and minimum values respectively between these 
time points. p1{y  corresponded to the first peak, p2{y  
corresponded to the second peak, and successive 
peaks were referred to using the same notation. 
Troughs were identified in the same manner, as t1{y , 

t2{y , as illustrated in Figure 8. The period of the signal, 
T, was then calculated by finding the time between 
successive peaks, or troughs. The methods used to 
calculate z, wn and I are described below, and the 
calculated values for each subject, as well as mean 
values, are presented in Table I. An inverse dynamics 

model simulation for subject 5 is presented in figure 
10.
1) Initial Estimate of the Damping Ratio of the Elbow Joint, z: 
The value of the logarithmic decrement, d, was 
determined using equation 30. Ideally, the value of 
d should be the same, irrespective of the chosen 
peaks or troughs in equation 30, however due to 
variability in the experimental conditions this is 
not always true. Hence, for each pendulum test, d 
was calculated using eight different pairs of peaks 
and troughs, and that pendulum test was only 
considered valid if the standard deviation between 
the d values was less than 30% of the mean of those 
values. Ten pendulum tests were conducted, with 
and without the added weight, the mean of the 
d values for each valid pendulum test was used in 
all subsequent calculations. An initial estimate of d, 
with and without an added weight at the wrist, was 
calculated using equation 30.

Table 1: The undamped natural frequency, n~ ,damping ratio, g, moment of inertia, I , and friction coefficient, F , of the elbow joint for each 

subject. na~  and ag  are the undamped natural frequency and damping ratio respectively, with an additional weight at the wrist. The mean 

values which were used in the model are presented. Reported values are correct to two decimal places.

Subject Gender M (kg) d (m) g ag n~  (rad/s) na~  (rad/s) I  (kgm2) F  (Nms)

1 Female 65 0.3 0.09 0.07 7.15 6.87 0.13 0.17

2 Female 58 0.3 0.1 0.06 7.56 7.08 0.05 0.07

3 Female 63 0.31 0.07 0.06 7.35 7.09 0.18 0.19

4 Male 70 0.31 0.06 0.04 6.92 6.57 0.09 0.08

5 Male 78 0.32 0.1 0.08 7.57 7.18 0.14 0.21

6 Female 70 0.3 0.08 0.06 7.98 7.23 0.09 0.11

7 Male 86 0.32 0.09 0.08 7.01 6.61 0.3 0.39

8 Male 90 0.33 0.1 0.09 7.08 6.79 0.27 0.38

Mean±SD 0.09±0.02 7.33±0.36 0.16±0.09

Fig. 9: Typical recording of time against elbow angle during a 

pendulum test. The time period, T, and the amplitude of the first 

to fourth peaks, p1{y  to p4{y , and the first and second troughs, t1{y  

and t2{y , are indicated. The turning points are also indicated using 

the index m.

  

2) Initial Estimate of the Undamped Natural Frequency of the Elbow 
Joint, n~ : The period of the pendulum swing, T, is 
related to the undamped natural frequency of the 
elbow joint, n~ , and its damping ratio was shown 
in equation 31:

( )31T

n

=
−

2

1 2

π

ω ζ

which can be rearranged to give an expression for 
n~ :

( )32ω
π

ζ
n

T
=

−

2

1 2

AMS _1-2017.indd   17 04.10.2017   10:06:21



18 VOLUME 21, No. 1, 2017

Fig. 10: (i). Joint angle with respect to the horizontal, h{ , is plotted 

against time (solid line). The state variable x1  is also plotted against 

time (dotted line), for k = 80 and a = 0.006. (ii) The model output, an 

estimate of I
Tf  is presented.

  

	 Using the equation in this form leads to numerical 
inaccuracy in calculating 1 2g- , because we have 
found 111g . This step is avoided by rearranging 
the equation for n~  as:

( )i

( )ii

( )33ω
πζ

ζ ζ
n

T
=

−

2

1 2

or

( )34ω
δ
ζn T

=

	 An initial estimate of n~  was calculated, with and 
without an added weight at the wrist. 
3) Optimisation procedure for g  and n~ : An unconstrained 
nonlinear optimisation was then conducted, using 
Matlab (The Mathworks). The difference between 
a measured pendulum curve and the theoretical 
curve, equation 27, was minimised using a Gaussian 
least squares error technique. Illustrations for three 
pendulum tests are shown in Fig. 11.
4) The Moment of Inertia of the Elbow Joint, I : Using equations 
3 and 4, it can be shown that the moment of inertia, 
I , is related to g  and n~  according to the following 

equation:

Fig. 11: Three pendulum test recordings compared with the 

solution to their corresponding equations of motion.

 

 

 
 

( )352ζωn
F

I
=

	 Since F cannot be measured directly using these 
experiments, a weight was added to the wrist and 
the pendulum test procedure was repeated, giving: 

( )36

where ag  and na~  are the values of the damping 
ratio and the undamped natural frequency of the 
elbow with an added 0.45 kg weight at the wrist. I 
can then be calculated by combining equations 35 
and 36, giving:

2
2

ζ ωa na

F

I md
=

+

( )37
I
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n
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2

1
ζω
ζ ω
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	 I was calculated for each subject. Individual and 
mean values are given in Table 1. 
5) The Friction Coefficient of the Elbow Joint, F: Equation 35 
may be manipulated in order to find the friction 
coefficient, F. The computed value of F for each 
subject is presented in Table 1.

( )38F In= 2ζω

3. Model Results
	 A movement trajectory, t{y ] g, shown on Figure 
10(i), was imported into Simulink. The controller 
was then tuned, using parameter values for subject 
5, so that t{y ] g was matched by x t1 ] g as closely as 
possible. The values k = 80 and a = 0.006 gave such 
a good match that the two graphs could not be 
distinguished from each other. This indicates that, 
subject to the accuracy of g  and n~ , the graph of 
y vs. t shown on Figure 10(ii) must also be a close 
representation of the unmeasurable net elbow 
torque per unit moment of inertia, 

I
T

tf
] g .

4. Discussion 
	 The model developed in this study may be 
used to predict net joint torque, which could be 
used to assess variations in movement patterns 
due to neuromuscular disease, or variations in 
biomechanical parameters between different 
subject groups. This type of model could also be 
used in the development of a musculoskeletal 
model or a neuromusculoskeletal model. The 
accuracy of the model results depends on the 
accuracy of the values g , n~ , a and k. In order to find 
unnormalised joint torque, the moment of inertia, 
I, must also be known. The controller was tuned so 
that reliable values of a and k were obtained, and an 
experimental procedure was employed to measure g 
and n~ . Passive muscle force was neglected from the 
equation of motion of the system, which could have 
an effect on the results of the pendulum test study. 
A solution to the pendulum equation of motion was 
compared with experimentally recorded pendulum 
tests, using subject specific values of g and n~  in 
each case. Three examples of this comparison are 
presented in Figure 11, showing a good match. 
Similarly close matches were obtained for other 
subjects. Therefore, the methods derived in this 
study to calculate the biomechanical parameters 
g, n~  and I were considered to be reliable. The 
method used in this study to measure the moment 

of inertia of the elbow joint, using an added mass 
a known distance from the joint, was developed 
independently, had been used previously by [12] for 
the knee joint. However, equation 37 was derived 
using an alternative and much simpler method 
in this study than in [12]. Previously, an almost 
constant value of 0.125 for g was found for the knee 
joint by [2] and [1]. This is not the case for the elbow 
joint in our study. The biomechanical parameters of 
the elbow joint measured in this study have been 
previously shown to vary significantly with gender 
[9], and between subjects in a group of male stroke 
patients, indicating that a subject-specific method 
should be used to measure these parameters.

5. Conclusion
	 An inverse dynamics model of the elbow joint has 
been developed, using control theory. A nonlinear 
observer was designed, which could estimate joint 
torque per unit moment of inertia, based on a 
measured movement trajectory. The physiological 
parameters required by the model were measured 
using the pendulum test at the elbow joint, and 
their accuracy was indicated by the goodness of fit 
obtained between the pendulum swing curves and 
the analytical solution to the linearised pendulum. 
The new method presented here allowed the 
moment of inertia of the elbow joint to be easily 
measured. The inverse dynamics model developed 
in this study could be a useful tool for clinicians in 
analysing kinematics in patients with neuromuscular 
disorders or who undergone orthopaedic surgery.
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