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Abstract: Paper deals with experimental determination of modal parameters of 
symmetric structures which have so-called coupled mode shapes of vibration. 
These modes usually have almost the same frequencies. This is why it could be 
difficult to identify them from frequency response functions where their peaks 
overlap. Main attention is focused on the using of Complex Mode Indicator 
Function (CMIF) that is able to separate coupled and also closely spaced modes 
by using singular value decomposition of multiple reference FRF matrix. In the 
paper there is described a theoretical background of CMIF and its application in 
spatial domain parameter estimation. Its functionality is explained on an analytical 
model of mechanical system of six degrees of freedom. Its practical application is 
presented by experimental modal analysis of circular saw blade.
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1. Introduction
	 It is well known that mode shapes of mass and shape symmetric objects are 
symmetric but such objects also have mode shapes which are mutually quite the 
same but rotated about the symmetry axis. Such mode shapes are called coupled 
and theoretically they should be belonging to same frequency. In practice, there is 
always some inhomogeneity of a material or the shape of a specimen is not exactly 
symmetric so the frequency shift of coupled modes occurs. By experimental modal 
investigation such shift can be also created by inconvenient support of a tested 
specimen or by application of transducers at improper locations.
	 There exist several algorithms that allow to estimate modal parameters either 
in time or frequency domain, but not every is able to distinguish coupled or too 
closed modes. The Complex Mode Indicator Function is very popular numerical 
tool commonly used in experimental modal analysis for the estimation of modal 
parameters [1, 2, 3]. The CMIF identifies modes by showing the physical magnitude 
of each mode and the damped natural frequency for each root. Since multiple ref-
erence data is applied in CMIF, repeated roots can be detected. The CMIF also gives 
global modal parameters, such as damped natural frequencies, mode shapes and 
modal participation vectors [4, 5, 6].

2. Objective and Scope of Research
	 The dynamic behavior of mechanical structure can be described by Frequency 
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Response Functions (FRF), each of which defines 
the relationship between one input and one 
output, i.e. between excitation and response [7]. 
The set of these functions forms so-called FRF 
matrix [H(jw)] that represents a response model 
of given structure. In the modal analysis area, by 
assuming linear and time invariant systems, the 
FRF matrix of a N degree-of-freedom system can 
be expressed as
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or in matrix form

where: [Rr] is the rth residue matrix, {f}r is the rth  

mode shape, {L}r is the rth modal participation 
vector, [f] is mode shape matrix, [L] is modal 
participation factor matrix, Qr is the scaling factor 
of rth mode, lr is the complex pole of rth mode.
	 By taking the singular value decomposition 
of the FRF matrix at each spectral line [4, 8], we 
obtain an expression equivalent to Eq. (2)

     ( ) HH j U S V  (3)

where: [U] is left singular matrix, [V] is right 
singular matrix, [S] is diagonal matrix of singular 
values.
	 Matrices [U] and [V] are unitary and have or-
thogonal columns. Mode shapes are represented 
by left singular vectors of [U] matrix and modal 
scale factors are represented by right singular 
vectors of [V] matrix. 
	 The comparison of Eq. (2) and Eq. (3) shows that 
singular values are proportional to the scaling 
factor divided by the difference between the 
discrete frequency and the modal frequency. 
For a given mode, since the scaling factor is a 
constant, the closer the modal frequency is to 
the discrete (measured) frequency, the larger 
the singular value will be. The Complex Mode 
Indication Function is defined as the eigenvalues 
solved from the normal matrix, which is formed 

from the FRF matrix, i.e. [H(jw)]H [H(jw)]. By this 
definition, the CMIF is equal to the square of the 
magnitude of the singular value [4, 5]
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where: CMIFk (jw) is the kth  singular curve, mk (jw) 
is the kth eigenvalue of the normal matrix of FRF 
matrix, sk (jw) is the kth singular value of the FRF 
matrix, Nr is the number of dominant modes that 
contribute to the final response of the structure.
	 The CMIF plot is the plot of singular values on 
a log magnitude as a function of frequency. The 
peaks detected in the CMIF plot indicate the 
existence of modes, and the located frequencies 
give the corresponding damped natural 
frequencies. However, it is necessary to note that 
not all peaks of CMIF indicate the modes. Some 
peaks are generated as a consequence of noise, 
leakage or nonlinearity. A cross (singular value) 
effect can also generate an apparent peak. The 
cross effect occurs due to way the CMIF is plotted 
and can be observed especially on the lower 
singular curves because the largest singular curve 
is plotted first. The indication of coupled modes 
is given by presence of more peaks of CMIFs at a 
same frequency. 
	 Left singular vectors correspond to scaled 
mode shape vector. Unscaled mode shape can be 
solved as [1]
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where: {u (jwp)}k  is the unscaled mode shape for 
kth repeated root at jwp, {v (jwp)}k is the equivalent 
mode participation factor for kth repeated root at 
jwp, Nk is the number of repeated roots detected 
at peak frequency jwp that is the approximate 
damped natural frequency of rth mode.

3. Analytical Model
	 The functionality of CMIF will be explained on a 
simple analytical model of linear damped system. 
Let us consider mechanical system of six degrees-
of-freedom (Fig. 1), of which physical properties 
are expressed by following matrices:

(4)

(5)
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where [M], [B], [K] are mass matrix, damping matrix 
and stiffness matrix, respectively.
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Fig. 1: Model of damped mechanical system of six degrees-of-

freedom.

 

	 For the case of free vibration, the equation of 
motion of the given system in matrix form is
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	 Frequency response functions representing the 
result of multiple reference measurement can be 
calculated from Eq. (1a) after the modal parameters 
are known. Modal parameters will be taken from 
eigen solution of state equation
where
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is state matrix.

	 The solution leads to eigenvalues lr and 
eigenvectors {y}r. The eigenvalues represent 

complex conjugate poles of the system

r r drj    

where: dr = -Re(lr) is the damping factor of rth 
mode, wdr = Im (lr) is damped natural frequency 
of rth mode.
	 The elements of residue matrices in Eq. (1a) are 
the product of the modal deformations at the qth  
input and pth response degrees-of-freedom and a 
modal scaling factor of rth mode, i.e.

pqr r pr qrR Q 

where: ypr is the mode shape coefficient at response 
DOF p of rth mode, yqr is the mode shape coefficient 
at input DOF q of rth mode.
	 For proportionally damped systems, modal scaling 
factor can be expressed as [5]
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where: Mr is modal mass of rth mode that can be 
calculated as
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	 All frequency response functions calculated by 
this way can be written into the matrix that is FRF 
matrix of analyzed model. As an example, Fig. 2 
shows frequency response functions of the 4th 

column of FRF matrix.

Fig. 2: Example plot of frequency response functions of the given 

system.
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	 Now, when the FRF matrix is known, we can 
proceed to estimation of modal parameters. 
Complex Mode Indicator Function obtained by 
singular value decomposition of FRF matrix is 
plotted in Fig. 3. There are five dominated peaks 
whose frequencies correspond to the approximate 
values of natural damped frequencies, but as we 
can see in Fig. 3 the first and second singular curve 
overlap each other. In other words they have peaks 
at the same frequency. It means that these two 
modes (5th and 6th) are coupled. The estimated 
mode shapes of vibration were extracted from left 
singular matrix [U] and are shown in Fig. 4. We can 
observe that one of coupled modes is symmetric 
and the second one is anti-symmetric.

Fig. 3: Complex Mode Indicator Functions of analyzed model.

Fig. 4: Scaled mode shapes of analyzed model.

	 For a comparison, the estimated and also exact 
modal parameters of given system are presented 

in Table 1. It should be noted that the accuracy of 
estimated frequencies and damping ratios depends 
on resolution of frequency spectrum. Damping 
ratios noted in Table 1 were estimated from CMIFs 
by means the half power bandwidth method.

Table 1: Natural frequencies and damping ratios of analyzed sys-

tem.

Mode Exact parameters Estimated parameters

ω [rad/s] ζ [%] ω [rad/s] ζ [%]

1 66.6650 0.6274 67.1119 0.6385

2 181.7973 1.2264 181.3022 1.2383

3 255.2392 1.7638 255.4257 1.7437

4 420.1205 1.5920 419.6995 1.6071

5 548.0735 0.3799 547.9132 0,3818

6 548.0689 0.3795 547.9132 0,3818

4. Experimental Case
	 For experimental investigation of coupled modes 
the circular-saw blade with outside diameter of 250 
mm and thickness of 4 mm was used. Saw blade 
was supported by elastic very soft foam. There were 
defined 81 degrees-of-freedom, three of which 
were reference (Fig. 5).

Fig. 5: The tested circular-saw blade.

 

	 As a measuring device the Brüel&Kjaer Pulse sys-
tem was used. The structure was excited by the im-
pact hammer Brüel&Kjaer type 8206 with plastic tip. 
The responses were measured by three uniaxial ac-
celerometers Brüel&Kjaer type 4507-B. All the mea-
surement was performed in MTC-Hammer software. 
Span frequency was set at 5000 Hz and the frequen-
cy resolution was 0.7813 Hz.
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Fig. 6: CMIF functions of exported data.

	 For next processing the measured FRFs were ex-
ported to Pulse Reflex software and CMIF functions 
were computed (Fig. 6). Modal parameters of the 
circular-saw blade were determined on the basis 
of CMIF with using of rational fraction polynomial 
(RFP) method.
	 The presence of coupled modes is indicated by 
the peaks of the same frequency on particular sin-
gular curves. We can also observed in Fig. 6 that 
for second and eighth mode there are no coupled 

Table 2: Natural frequencies of circular-saw blade.

Frequency of modes [Hz]

1st 2nd 3rd 4th 5th 6th 7th

321.7
323.6

507.8 767.6
772.8

1207
1219

1340
1371

2047
2075

2115
2117

8th 9th 10th 11th 12th 13th

2347 2909 3232 3457 3904 4530

2931 3239 3467 3926 4534

mode because only one singular curve has peak on 
that frequency. The acquired natural frequencies are 
presented in Table 2.
	 Frequencies of coupled modes are not exactly 
same. One reason is an added weight of applied ac-
celerometers that influenced the structural proper-
ties of the saw blade and the conditions of its sym-
metry. For the illustration, only the first seven mode 
shapes are shown in Table 3.

Table 3: Mode shapes of circular-saw blade.

1st mode 2nd mode 3rd mode 4th mode

Coupled mode not
exist

5th mode 6th mode 7th mode
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5. Conclusions
	 The estimation of modal parameters is a difficult 
process because the noise-free measurement has to 
be performed and proper extraction method has to 
be used. The paper presented the way of identifica-
tion of coupled modes by using Complex Mode In-
dicator Function based on singular value decompo-
sition of FRF matrix. The CMIF appears to be a simple 
and efficient method for identifying the modes of 
the complex system. It provides a global estimation 
of modal parameters, so damped natural frequen-
cies, mode shapes, modal participation vectors and 
damping ratios are available with relative ease. The 
accuracy of modal parameters depends on the reso-
lution of frequency spectrum and the conditions of 
an experiment. As was shown in the paper, trans-
ducers applied to a structure can cause a shift of 
natural frequencies. It is therefore likely that the real 
natural frequencies of the tested circular-saw blade 
are higher than the measured values. This phenom-
enon can be circumvented by using contactless 
method to measure responses.
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