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Abstract: This paper addresses the elastic buckling of simply supported cross-ply 
rectangular symmetric laminates with allowance for the effects of prebuckling 
in-plane deformation and higher-order strain terms (curvature terms), using the 
first order shear deformation theory. The governing plate equations are derived 
by considering the stationary condition for the derived energy functional by 
applying the calculus of variations. The buckling load of symmetric cross-ply 
laminated rectangular plates, which are subjected to uniaxial compression, 
biaxial compression, and biaxial compression and tension, are determined whilst 
the effects of different parameters, the plate aspect ratio, the relative thickness 
degrees of material orthotropy and numbers of layers are investigated.
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1. Introduction
	 Many investigators have studied the post-buckling behaviour of isotropic and 
orthotropic plates, using different methods, e.g. finite element method, finite 
difference method, Ritz method, and Galerkin’s method. 
	 Buckling of composite plates has been investigated extensively in the 
monograph edited by Turvey and Marshall [1]. Pagano [2] developed an exact 
three-dimensional (3-D) elasticity solution for static analysis of rectangular bi-
directional composites and sandwich plates. Noor [3,4] presented a solution for 
stability and vibration of multi-layered composite plates based on 3-D elasticity 
theory by solving equations with the finite difference method. Marshell et al. [5] 
presented a theoretical analysis for post-buckling behaviour of thin orthotropic 
curved panels subjected to central point load and uniform pressure loading. Kim 
and Voyiadjis [6] studied the nonlinear bending behaviour of moderately thick 
plates and shell using an eight nodded shell element with six degrees of freedom 
per node. 



Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

19

	 They have taken the geometrical non-linearity 
arises owing to both the quadratic terms of 
the Green strain tensor and the kinematic 
relation themselves. It is limited to geometric 
imperfections that reduce the buckling capacity. 
Kang and Leissa [7] extended their analysis to 
buckling of rectangular thin plates having two 
opposite edges simply supported and subjected 
to linearly varying in-plane load. 
	 Reddy and Phan [8] obtained exact buckling 
loads and natural frequencies of simply supported 
rectangular plates by using a higher-order 
shear deformation theory. Bouazza et al. [9, 10] 
investigated the buckling behavior of functionally 
graded material plate under different loading 
conditions based on the based on the classical 
plate theory. 
	 Bouazza et al. [11, 12] used the first-order 
shear deformation theory to derive closed-form 
relations for buckling temperature difference of 
simply supported moderately thick rectangular 
power-law functionally graded plates. Matsunaga 
[13, 14] analyzed the buckling of thick elastic 
plates subjected to in-plane stresses, with 
particular emphasis on the variation of natural 
frequencies in preloaded condition. Noor and 
Burton [15] proposed some FEM buckling 
solutions for multilayered composite layers 
subjected to in-plane and shear loadings. 
Ferreira et al. investigated the buckling behavior 
of composite shells by means of a layered 
formulation [16]. The same author has recently 
applied a meshless method in order to compute 
the natural frequencies of thick layered plates 
[17].
	 In this work, we investigate the elastic 
buckling behaviour of simply supported cross-
ply rectangular symmetric’ laminates based on 
first order shear deformation theory and and the 
incremental total potential energy approach. 
The governing differential equations for this 
problem have been derived by considering 
the stationary condition for the derived energy 
functional by applying the calculus of variations. 
Using the Navier solution method, the differential 
equations have been solved analytically and the 
critical buckling loads presented in closed-form 
solutions. Analytical expressions are validated 
with existing results in the literature for some 
special cases.
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2. Theoretical formulation
2.1 Incremental potential energy
	 Let the present configuration of the plate be C1, 
and the next configuration be C2. The incremental 
total potential energy functional of the plate can 
be expressed as:

Where: u0 and v0, are the displacements in the 
x and y directions at the midplane of the plate 
when the plate deforms from C1, to C2; V is the 
volume of the plate at C1; de is the incremental 
Green-Lagrange strain tensor from C1 to C2; dNx 
and dNy are the load increments in the x and y 
directions from C1 to C2; t is the second Piola-
Kirchhoff stress tensor at C1; and the subscripts L 
and N denote linear and nonlinear components, 
respectively.
2.2 Kinematics
	 A standard x, y, z Cartesian coordinate system is 
located at the center of the plate, as illustrated in 
Fig. 1. The plate thickness and in-plane dimensions 
are denoted by h, a and b, respectively. In addition 
the plate is composed of an arbitrary number of 
layers with arbitrary fiber orientation (denoted by 
q) in each layer. The Mindlin-type laminated plate 
equations’ for bending and buckling of symmetric, 
anisotropic laminates are based on the assumed 
displacement field
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	 In which u, v and w are the displacement 
components in x, y and z directions respectively. 
qx and qy are also the neutral plate rotations 
around y and x axes respectively. In accordance 
with the above displacement field, the definitions 
for deL and deN in the Green-Lagrange strain-
displacement relation-ship are [18]:

(1)

(2)
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Fig. 1: Laminated plate nomenclature.

0

0

x

y
xxL

yyL
x x

L xyL

yzL

yxzL

x

u z
xx

v z
yy

u v
z

y x y x
v w w
z y y
u w w
z x x







  






  
                                                

                    
            

2 2 2

2 2 2

1
2

1
2

xxN

yyN

N xyN

yzN

xzN

u v w
x x x

u v w
y y y

u u v v w w
x y x y x y
u u v v w w
y z y z y z
u u v v
x z x




 



                        
                                                 
         
     
   


  

22 2
2 2 0

22 2
2 2 0

0 0

1
2

1
2

yx

yx

y yx x

yx
x y

wz z
x x x

wz z
y y y

w w
x y x y x y

z z
y y

w w
zz x z





  

 

                          
 

       
                 

         
         

  
 

  
  

    
yx

x yz
x x

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

2.3 Constitutive relations
	 Under the assumption that each layer possesses 
a plane of elastic symmetry parallel to the x–y 

plane, the constitutive equations for a layer can 
be written as:
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	 Since the laminate is made of several orthotropic 
layers with their material axes oriented arbitrarily 
with respect to the laminate coordinates, the 
constitutive equations of each layer must be 
transformed to the laminate coordinates (x,y,z). 
The stress-strain relations in the laminate 
coordinates of the kth layer are given as:
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Where: ijQ  are the transformed material constants 
given as:
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in which q is the angle between the global x-axis 
and the local x-axis of each lamina.
2.4 Equation of motions
	 Denoting partial differentiation by a comma, the 
plate constitutive relations are of the form: 
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Where: k is a shear correction factor as introduced 
by Mindlin. (Aij, Dij) are the plate stiffness, defined 
by
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	 Denoting normal stresses by vi and shear 
stresses by xij, then

	 Designating C1 as the straight configuration 
(impending state of buckling) and C2 as the bent 
configuration (just after buckling), the incremental 
loads dNx and dNy are equal to zero and the second 
Piola-Kirchhoff stress tensor at C1 is given by

Where: ˆ x  and ˆ y  consist of the stresses of 
different laminas, ˆ x  and ˆ y )......,3,2,1(ˆ liy    
which are related to the in-plane loads Nx and Ny. 
The procedure for determining ˆ x  and ˆ y  will be 
given in due course.
	 Substituting eqns (3)-(13) into eqn (1) and then 
integrating with respect to z, the incremental total 
potential energy functional of a symmetric cross-
ply laminated plate is derived as
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	 In which the underlined terms are the so-called 
curvature terms which come from the higher order 
strain terms in eqn (4). The parameters Fx and Fy 
are determined by
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	 A is the plate area at the impending state of 
buckling C1, given by

where: lx and ly are the pre-buckling in-plane 
deformation factors in the x and y directions, 
respectively.
	 When the plate is at the C1 configuration 
(impending buckling), the in-plane strains ˆx  and  
ˆy  can be obtained by:
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	 The above equation implies that the strains ˆx  
and ˆy  are identical in different laminas under 
in-plane loads Nx and Ny respectively. Thus, the 
prebuckling in-plane deformation factors lx and 
ly can be determined by
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in which g is a scalar indicator. If g =1, the effect 
of prebuckling in-plane deformation is considered; 
while if g =0, this effect is ignored. Furthermore, 
the stresses ˆ x  and ˆ y  the ith lamina are given by
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3. Analytical Solutions for Symmetric Cross-ply 
Laminates

	 For symmetric cross-ply laminates, the following 
plate stiffness’s are identically zero:
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	 For generality and convenience, the Cartesian 
coordinates (x, y) are non-dimensionalized as 
follows:
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	 Substituting eqn (22) into eqn (14) leads to
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	 A scalar indicator m is introduced in the above 
equation. If m =1, the higher-order terms (curvature 
terms) are included in the energy functional. If  
m =0, the curvature terms are neglected.
	 Taking the stationary conditions of eqn (23) with 
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respect to w0, qx and qy using the Euler-Lagrange 
equation yields the following governing differential 
equations for buckling of symmetric cross-ply 
laminated plates with allowance for prebuckling 
in-plane deformation and curvature terms: 

	 Let the origin of coordinates (x,h) be at the 
bottom left corner of the plate. The trigonometric 
functions

	 Substituting eqn(27) into the differential 
equations [eqns(24)-(26)] the governing eigenvalue 
equation, which determines the buckling load of 
the simply supported rectangular plate, is derived 
as

Where:
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	 For nontrivial solution of the buckling load N0 the 
determinant of the matrix in eqn (28) must be equal 
to zero. It is seen from eqns (17) and (19) that the 
pre-buckling in-plane deformation factors lx and 
ly are functions of in-plane load N0. Consequently, 
the terms Pi, i=1,2...,7 in eqn (29) are all functions 
of N0 and the determinant of the matrix in eqn (28) 
is a high-order function of . In view of the difficulty 
involved in a continued analytical development, 
a numerical procedure is implemented to obtain 
closed-form solutions for the buckling load N0.
	 The influence of load N0 in Pi, i=1-7, is revealed 
through the prebuckling in-plane deformation 
terms lx and ly and the so-called curvature terms 
(when m=1). Viewing eqn (28), the buckling load N0 
can be expressed as

 
2 2 2
3 4 2 3 5 1 5 2 6 1 4 6

0 2
7 2 6 1 4

2P P P P P P P P P P P PN
P P P P P

   




4. Numerical Results and Discussion
	 In this section, various numerical examples are 
described and discussed for verifying the accuracy 
of the present method in predicting the buckling 
behaviors of simply supported symmetric cross-
ply laminates. For the verification purpose, the 
results obtained by present method are compared 
with those of the results of previous works in 
the literature and computer code Ansys. In all 
examples, a shear correction factor of 5/6 is used 
for FSDT. The following lamina propertied is used:
Material [19,20 ,21]

1 2 2 3/ , ,E E open E E 

2

3
2

crN aN
E h



	 In order to verify the present solutions, the 
convergence properties of the biaxial critical 
buckling loads of square cross-ply laminated 
composite plates are presented in Table 1. As table 
shows, the present results have a good agreement 
with Refs. [19, 20, 21] and finite element method 
using Ansys. 
	 Table 2 presents a comparison of the lowest 
critical buckling loads of three-layer cross-ply 
laminated plates with analytical solutions [20, 21] 
and finite element method for various values of the 
degree of orthotropy of the individual layers E1/E2. 
They are in excellent agreement.
	 Figures 2-6 display the first mode shapes of 
a symmetric cross-ply laminated square plates 
(0°/90°/0°; a/h=10) for E1/E2=2, 10, 20, 30, 40 
respectively with simply supported (elements 
Shell 99). The value of the nondimensional critical 
buckling load of the graphs of first mode exists in 
table 1.
	 The effects of aspect ratio a/b on nondi-
mensional critical buckling load of simply sup-
ported symmetric cross-ply rectangular lami-
nates under uniaxial compression, compression 
along the x-axis and tension along the y-axis 

E1/E2 Present FSDT Present Ansys GLHOT [21] HSDT [20] HSDT [19] FSDT [20] CPT [20]

2 2.3442  2.1277 2.36625 2.343 2.364 2.344 2.473

10 4.9355 4.7510 4.96038 4.916 4.963 4.936 5.746

20a 7.4923 7.3350 7.49323 7.449 5.516 7.588 9.591

30a 8.9751 9.3757 8.80314 8.820 9.056 8.575 12.147

40a 10.2024 11.0350 9.82430 9.975 10.259 10.202 14.704

	 The material properties are assumed to be the 
same for all layers and the critical buckling loads 
are normalized as

a The lowest critical buckling occurs at mode numbers m =1, n =2.

12 13 2 23 2

12 13 23

0.6 , 0.5 ,
0.25, 0.49

G G E G E
v v v

  
  

Table 2: Comparison of lowest biaxial critical buckling loads (a/h=10) Comparison of buckling factors, 2 3
2crN N a E h , for simply sup-

ported symmetric cross-ply laminated square plates a/h=10, three-ply) subject to biaxial compression (Nx=Ny=N0) without consideration 

of the effects of prebuckling in-plane deformation and curvature terms.

(30)
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Table 2: Comparison of non-dimensional biaxial critical buckling 

loads (a/h=10, E1/E2=40), for simply supported symmetric cross-

ply 0°/90°/0° without consideration of the effects of prebuckling 

in-plane deformation and curvature terms.

Fig. 2: First buckling mode of symmetric cross-ply laminated 

square plates subjected to biaxial compression (0°/90°/0°; a/h=10, 

E1/E2=2), Shel99 element.

 

Fig. 3: First buckling mode of symmetric cross-ply laminated 

square plates subjected to biaxial compression (0°/90°/0°; a/h=10, 

E1/E2=10), Shel99 element.

 

Fig. 4: First buckling mode of symmetric cross-ply laminated 

square plates subjected to biaxial compression (0°/90°/0°; a/h=10, 

E1/E2=20), Shel99 element.

 

Fig. 5: First buckling mode of symmetric cross-ply laminated 

square plates subjected to biaxial compression (0°/90°/0°; a/h=10, 

E1/E2=30), Shel99 element.

 

Fig. 6: First buckling mode of symmetric cross-ply laminated 

square plates subjected to biaxial compression (0°/90°/0°; a/h=10, 

E1/E2=40), Shel99 element.

 

m, n Present 
FSDT

Present 
Ansys

GLHOT 
[21]

HSDT [20]

1,1 11.1576 11.0350 11.08254 11.060

1,2 10.2024 14.2070 9.82430 9.975

1,3 14.3344 23.9280 13.05053 13.627

1,5 23.9730 29.2210 20.83553 21.795

1,7 30.7596 32.9530 27.63812 27.465

1,9 34.9727 35.5320 30.52917 31.280
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Fig. 7: Variation of the non-dimensional critical buckling loads ver-

sus the aspect ratio a/b of plates for simply supported symmetric 

cross-ply rectangular laminates subject to uniaxial compression 

(g=0, m=0).
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Fig. 8: Variation of the non-dimensional critical buckling loads 

versus the aspect ratio a/b of plates for simply supported symmet-

ric cross-ply rectangular laminates subject to biaxial compression 

(g=0, m=0).
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and biaxial compression are shown in Figs. 7 
and 8, respectively. The thickness ratio b/h is 
assumed to be 10 for stacking sequences of 
[0°/90/0°], [0°/90/0°/90/0°], [0°/90/0°/90/0°/90/0°], 
[0°/90/0°/90/0°/90/0°/90/0°]. It is shown that the 
nondimensional critical buckling load generally 
decreases by the increase of the aspect ratio a/b. 
In the case of uniaxial compression as shown in  
Fig. 7, the graphs are not smooth due to the 
change of critical buckling mode as the aspect ra-
tio increases. Whereas, the graph in the case of bi-
axial compression as shown in Fig. 8 is smooth due 
to the existence of a single critical buckling mode 
regardless of aspect ratio a/b. On the other hand, 

the nondimensional critical buckling load increas-
es, when the number of plies is increased.
	 A comparison of Fig. 7 with Fig. 8 shows that 
the nondimensional critical buckling load for the 
plate under uniaxial compression (Nx=N0, Ny=0) is 
greater than that under biaxial compression (Nx= 
Ny=N0).

5. Conclusions
	 An exact solution has been developed to 
investigate the buckling behavior of simply 
supported symmetrical cross-ply rectangular 
plates subjected to uniaxial compression and 
biaxial compression. The present exact solution 
is developed on the basis of the first-order shear 
deformation lamination theory. The results of 
the present solution are verified by with existing 
results in the literature for some special cases 
and computer code Ansys. A parametric study is 
conducted to investigate the effects of aspect 
ratio, thickness-to-width ratio and the modulus 
ratio on the buckling load factor. Based on the 
results discussed earlier, major conclusions can be 
summarized as follows:
1.	It is observed that as the aspect ratio a/b increases, the critical 
buckling load mainly decrease.
2.	The numbers of layer significantly affect the buckling coefficient.
3.	The increasing layer number increases the critical buckling load.
4.	The buckling load of the plate under uniaxial compression is 
greater than the one under biaxial compression.
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