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ABSTRACT
The paper presents an analysis of stress state in a sandwich open conical shells during 
of stability loss. The shells under consideration consist of lightweight core layer and 
two face-layers which are load-carrying. The thickness of those faces is assumed to be 
equal, and the thickness of the core is about 80% of the whole shell thickness. The load 
carrying faces are made of isotropic, compressible, work-hardening materials. The core 
layer is assumed to be elastic, incompressible in the normal z direction and it resists 
transverse shear only. The shell under consideration is loaded by lateral pressure and 
longitudinal force. Deformation of the shells within the plastic range is possible before 
buckling. To determine the stress state which occurs during stability loss, the stability 
equations have to be derived. With respect to the presented research, constitutive 
relations of the Nadai-Hencky deformation theory, alongside the HMH (Huber-Mises-
Hencky) yield condition constitutive relations, are accepted in the analysis. 
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1. Introduction
	 Thin-walled shells consisting of three layers have 
high structural efficiency and they are very interest-
ing for a designers and builders of the lightweight, 
modern constructions. Those structures are more 
often used to design various structures (e.g. aero-
space, buildings, tanks) and therefore these are 
well recognized in the scientific literature [1-4]. The 
main advantage of such structures is the load-to-
weight ratio which is comparatively high. In effect 
of that, the shells with high bending stiffness and 
high compressive buckling strength witch com-
paratively low weight can be obtained. The conical 
shell elements are often used in some kind of tech-
nical structures (e.g. plane and aerospace fuselage, 
train bodies). Therefore, in particular applications, 
a sandwich conical shell element under combined 
external loads may provide for interesting case 
studies. Stability of cylindrical and conical shells 
is considered by many authors. Research works 
refers to single-layer shells [5-7], as well as to the 
bi-layered [8,9] and sandwich shells [10-13]. Vari-
ous methods of sandwich structures analysis are 
presented in [3,4] and a large reference list is given 
there. Some empirical results concerning conical 
shells subjected to external uniform pressure are 
presented in [7]. In [1,2] an analysis of conical shells 
under various loading is presented. Interesting, 
new method of empirical measurement of strains 
and stress fields in the loaded structures is present-
ed in Ref. [14]. In the majority of publications some 
initial assumptions about changes in stress values 
are accepted. Most of publications assume the ac-
tive loading process (Shanley approach) [10-13].
	 Article shows the possibility of determining the 
stress changes during of stability loss. This allows 
for the adoption an appropriate method of loads of 
the construction (constant load or active load ap-
proach). An analysis of the stress changes of sand-
wich conical shells under combined loading is the 
main objective of this paper.

2. Basic assumptions
	 Several assumptions must be accepted at first. 
The analyzed object is a sandwich conical shell ele-
ment. The shell consists of two thin face-layers and 
one core layer (Figure 1). In this consideration the 
face-layers are of equal thicknesses and are made 
of the same material which is compressible and 
isotropic. The other considerations especially for 

unsymmetrical shells could be seen in the previ-
ous publications [11,12]. The core layer is made of 
lightweight material and is assumed to be elastic, 
incompressible in the normal z direction and it re-
sists transverse shear only. The symmetry surface of 
the shell is taken as the reference surface.

Fig. 1: The layered shell with the coordinate system.

 

	 The several additional assumptions, which have 
been taken with respect to the foregoing model, 
are as follows: 
the shell is shallow and thin-layered, 
the general theory of thin-layered shells and 
geometrically nonlinear theory and elastic-plastic 
properties of the faces are  obligatory,
the Kirchhoff-Love hypothesis is valid within the 
entire cross-section of the shell and the displace-
ment in normal z direction does not depend on the 
z coordinate,
the prebuckling stress state is the membrane one,
the post-buckling stress state could be elastic, 
elastic-plastic or plastic,
the bilinear stress-strain relation for the face-lay-
ers is accepted and the constitutive relations in the 
analysis are those of the Nadai-Hencky deforma-
tion theory with the HMH yield condition,
there is no imperfections in the considered shell.

3. Loading and stresses
	 There are two different types of loads acting on 
the shell under consideration. The first one is the 
longitudinal forces Na, Nb applied at the edges of 
the shell and the second one is the surface pres-
sure q directed perpendicularly to the shell main 
surface (Figure 2). 
	 According to the main assumptions, there is a 
membrane stress state in the shell. Internal forces 
in that stress state vary on x-coordinate and are de-
scribed as follows:
	 from the compressive axial forces:
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Fig. 2: The model of the shell under consideration, q, Na, Nb – ex-

ternal loads.

	 The limitation of the Nadai-Hencky deformation 
theory which is used in this work is the condition 
of proportional loading. Because of this the param-
eter l, which represents the ratio between the lat-
eral and longitudinal load is introduced:
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	 The stresses in the pre-buckling state of stress 
can be accordingly expressed by the external forc-
es:
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4. Stability equations and equilibrium paths
	 To calculate the effective stress during the stabil-
ity loss, it is necessary to calculate the critical val-
ues of the external loads. This goal was achieved 
and described in previous works [11,12]. In those 
papers the stability equations of sandwich coni-
cal shells under combined load were analyzed and 
the procedure for obtaining the equilibrium paths 
is described in detail. Therefore in this work the 
calculation procedure will be described only in a 
general manner. To derive the stability equations 
a variation, strain energy method was accepted 
and the Ritz method was used to solve the stability 
equations. 
	 The geometrical relations between the displace-
ment components: u, v, w of the arbitrary point 
of the shell and the displacements of the points 
on the middle surfaces of the specific faces u1, u2, 

v1, v2 (Figure 3) were described by following the so 
called broken line approach.

 
Fig. 3: The displacements of the sandwich shell element.

	 The displacements for the arbitrary points of the 
shell could be described separately for:
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	 the upper face-layer [ -c -b ≤ z ≤ -c ]:
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	 Where: ua, ub, va, vb are relations between dis-
placements of the points on the middle surfaces of 
the specific faces [1,2]:
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	 The strains and changes in curvature are ex-
pressed depending on the displacements as de-
scribed above, using non-linear geometrical rela-
tions given in [1].
	 The effective stress in the shell faces can exceed 
the yield stresses for the material of these faces. 
When this occurs the constitutive relations of the 
Nadai-Hencky deformation theory were used to 
obtain stability equations. The basic form of the 
equations of this plasticity theory is as follows:
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Where: 	 vm is average stress, dij is the Kronecker 
delta, K, m(fi) are the material constants.
	 The internal forces and moments developed by 
buckling were derived and can be described in a 
matrix form:
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Where: j=1 for the upper face-layer, j=2 for the 
lower face-layer.
	 The coefficients in Eqs.(12) are the local stiff-
nesses that follow the Nadai-Hencky deformation 
theory of plasticity.
	 A set of the stability equations, expressed by the 
displacements does not have an explicite solution. 
The virtual work principle and the strain energy 
methods comprise a basis for obtaining equilib-
rium equations for the considered shell. As far as 
a sandwich shell, the total strain energy is the sum 
of the strain energy of the specified layers. If the 
potential of external loads is represented by Lz we 
have the following relations:

.U U U U L 0p w w w z
1 2 3d d= + + + =] ] ] ] gg g g

Where: the particular superscripts are related to the 
shell layers: (1), (2) – the face layers, (3) – the core layer.
	 The terms in Eq.(13) related with the strain en-
ergy were described in [11,12].
	 The considered shell is free supported. The dis-
placements functions must satisfy the boundary 
conditions concerning the shell under consider-
ation: deflections at the edges of the shell are equal 
to zero, there are no displacements along the sup-
ports and there are no relative displacements of 
the both layers of the shell at the edges. Bearing in 
mind the above conditions the following displace-
ments functions were accepted [1, 11-13]:
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Where: Ai are free parameters to be determined, k, 
p are constants.
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Using the above displacement relations in the non-
linear geometrical relations, the full description of 
the shell potential energy Up is obtained. Next the 
Ritz method was applied. This method requires 
that the partial derivatives of the total potential 
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energy of the shell with respect to parameters Ai 

are zero. Finally, after some transformations a set of 
algebraic equations for the considered shell were 
obtained. The general matrix form of these equa-
tions is as follows:

Where: aij, bij are coefficients of the set of equations 
which depend on geometrical parameters of the 
shell, physical properties, buckling form, and exter-
nal loading.
	 The set of equations Eqs. (15) solved with respect 
to the free parameter A1 of the deflection function 
Eqs. (14), and following some transformations and 
simplifications, provides the final solution in the 
form of a non-linear algebraic equation:
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Where: ei are coefficients of the stability equation 
which  are very complicated in form and depend 
on the geometrical parameters, physical proper-
ties, buckling form and external loads acting upon 
the shell, l – ratio of proportional loading.
	 It is not possible to find an explicite solution to 
Eq. (16) because the coefficients in this equation 
depend on the external loads and should be con-
sidered as a variable. A solution could be obtained 
numerically, using iterative methods. Thus, the it-
erative methods have been applied and a special 
computer algorithm for the numerical calculations 
and elastic-plastic analysis has been developed. In 
Figure 4. could be seen the sample diagrams of the 
equilibrium paths made for different value of the 
shell inclination angle (a).

5. The stress state during of stability loss
	 The objective of this work is to determine the 
stress state in the face layers of the shell under 
consideration (Figure 1) during the stability loss. 
Based on the known values of the critical loads 
we can calculate the stresses occurring in the face 
layers of the shell. The calculations are performed 

 

Fig. 4: Equilibrium paths for various value of the shell inclination 

angle.

for increasing values of the parameter wu which 
describes the shell deflection. It is possible to de-
scribe the variability of the stress along the x-coor-
dinate. 
	 In the performed calculations, the following in-
put data were accepted.
	 The physical parameters:
the load carrying layers:
	 -	 Young’s modulus (E - 210000 MPa)
	 -	 Tangent modulus (Et - 30000 MPa)
	 -	 Poisson’s ratio (o - 0.3)
	 -	 Yield stress (vp - 240 MPa)
the core layer:
	 -	 Shear modulus (G3 - 26 MPa)
	 The geometrical parameters:
	 -	 Length of the shell (L - 0.5 m)
	 -	 Average radius of the shell (Rs - 2 m)
	 -	 Thickness of core layer (2c - 10 mm)
	 -	 Thickness of the face layers (b - 1 mm)
	 -	 Inclination angle (a - 30°)
	 -	 Radial angle (b - 30°)
	 The overall parameters:
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	 -	 Load ratio (l - 500)
	 -	 Number of half-waves along the shell length 
(m - 1)
	 -	 Number of circumferential half-waves (n - 1)
	 -	 Maximum of the shell deflection parameter 
(wu(max) - 2)
The shell deflection parameter is defined as fol-
lows: 	 wu=w/(2b+2c).

	 The surface on Figure 5 represents the changes 
in the stress depending on the x-coordinate mea-
sured along the shell and for various values of the 
shell deflection. The relation: effective stress (sig) 

– deflection parameter (wu) – x-coordinate on the 
shell (Lx) is the base to present the obtained re-
sults and discuss them. For better visualization Fig-
ures 6a and 6b shows separately a family of curves 
sig(wu) and sig (Lx) respectively. As may be noted 
the shape of the curves in Figure 6a resembles the 
shape of the equilibrium paths shown in Figure 5. 
The effective stress initially increases intensively. 
When the deflection parameter reaches a certain 
value (wu = 0,08 for analyzed shell) the effective 
stress reaches the extreme point (maximum) and 
the process of stability loss is initiated. Then can 
be observed drop of the effective stress. Then after 
reaching the next extremum (minimum), the effec-
tive stress increases again. It is noteworthy that the 
position of the extremal points is not dependent 
on the x-coordinate. On the other hand the effec-
tive stress value depends on the x-coordinate what 
can be clearly seen in Figure 6b. If the x-coordinate 
increases (towards to the base of the cone) the ef-
fective stress drops linearly. The relative change of 
the effective stress remains constant and for the 
considered shell reaches a value of 11.8%.

 
Fig. 5: The effective stress versus the deflection and the x-
coordinate: sig – the effective stress; wu – the shell deflec-
tion parameter; Lx – the length of the shell measured along 
x-coordinate (Lx=x-x1 – see Figure 1)

 
Fig. 6: (a) The effective stress versus the deflection for selected values of the x-coordinate. (b) The effective stress versus the x-coordinate for 

selected values of the deflection.

6. Conclusions
	 The objective of this paper is to analyze of the 
state of stress in the three-layer conical shell during 
the stability loss. For the shell with the parameters 
accepted in the analysis, the stability loss process 
occurs in the elastic-plastic or plastic state of stress. 
The work presents the changes in the effective 
stress during the stability loss on the entire length 
of the shell. Presented results show that during the 
stability loss, the effective stress may decrease over 
the whole length of the shell (unloading process). 
If this occurs, it seems to be more appropriate to 
use the so called constant load concept (Engesser-
Karman approach) which takes into consideration 
the material unloading and hardening after the 
stability loss. The constant load approach is a better 
approach from theoretical point of view because 
it takes into consideration the material unloading. 
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This approach will be considered in subsequent 
studies.
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