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ABSTRACT
Deep Brain Stimulation (DBS) is a neurosurgical 
technique in which microelectrodes, embedded 
in a closely specified target area of the brain, are 
stimulated by a periodic, rectangular, charge-bal-
anced signal, generated by a stimulator embed-
ded in the chest.  It was serendipitously discovered 
by neurosurgeon Professor Alim-Louis Benabid in 
Grenoble in 1987 that “high frequency” (of the or-
der of 130Hz) stimulation of the Basal Ganglia in 
the brain could eliminate the characteristic tremor 
(about  5 to 8 Hz) associated with Parkinson’s dis-
ease and also release the associated “locking of 
gait.” Since then the idea has been applied to other 
neurological diseases such as epilepsy, depression 
and Tourette syndrome and the phenomenon of 
“essential tremor.” The mode of action of DBS is still 
incompletely understood. This paper presents at-
tempts made by the authors to develop construc-
tive models of the phenomenology of DBS, based 
on classical Control Theory tools such as the Ny-
quist Stability Criterion, the Describing Function, 
the Root Locus method, Liapunov’s theorem of the 
First Approximation and, above all, the concept of 
the Equivalent Nonlinearity associated with injec-
tion of a “high frequency” wave into a nonlinear 
feedback loop to quench troublesome “low fre-
quency” oscillations. These models have proved 
very successful in predicting the dependence of 
pathological oscillations, observed as Local Field 
Potentials (LFP), on amplitude and fractional pulse 
duration of the DBS signal.

1. Introduction 
	 Several neurological disorders – some progres-
sive, others not – have been linked to pathological 
electrical oscillations in various areas of the brain. 

These include Parkinson’s disease, epilepsy, dys-
tonias, cluster headaches, obsessive-compulsive 
disorder, Gilles de la Tourette tics and depression 
[1]. Relief from the symptoms of such conditions 
has been strongly correlated [2] with quenching of 
these oscillations by deep brain stimulation (DBS), 
although a strictly causal relation between oscilla-
tions and symptoms does not appear to have been 
established yet. Nonetheless, quenching of the os-
cillations accompanies relief from the symptoms 
with such high probability that it has inspired our 
work in this area. We shall concentrate on two con-
ditions here: Parkinson’s disease [3] and essential 
tremor [4], the former progressive, the latter not.
	 Parkinson’s disease is correlated with pathologi-
cal oscillations in the basal ganglia of the brain, one 
on each side, shown schematically in Fig. 1. It was 
discovered by Arvid Carlsson in the 1950s that a 
chemical transmitter substance called dopamine is 
synthesized in the substantia nigra pars compacta 
(SNc) and that it is the selective death of these cells 
which manifests itself as Parkinson’s disease. Carls-
son was awarded the Nobel Prize for this discovery 
in 2000 [5]. It was discovered serendipitously by 
Benabid in 1987 [6] that DBS of the basal ganglia 
– most commonly targeting the subthalamic nu-
cleus (STN) – can, with careful choice of frequency,  
1/T, amplitude, a, and fractional pulsewidth, a, 
of the charge balanced DBS waveform shown on  
Fig. 2, give almost complete relief from the symp-
toms of Parkinson’s disease. A DBS frequency  
1/T=130Hz is typical in clinical practice, and we 
shall use it below. The pathological oscillations 
whose extinction is brought about by DBS are 
mainly observed in the tremor band (about 4 -  
8 Hz), the beta band (about 12 - 30 Hz) and the 
gamma band (> 30 Hz). The tremor band oscil-
lations appear to underlie the observed tremor, 
while the beta band oscillations are implicated 
in the seizure of gait and difficulty in initiating 
planned actions [2]. The gamma band oscillations 
are generally considered benign, although de Paor 
and Lowery have demonstrated that bilateral cou-
pling of feedback loops oscillating in the tremor 
band and the gamma band can give rise to beta 
band oscillations [7].
	 We have found that the complicated intercou-
pling of feedback loops in the basal ganglia (one 
of which, STN-GPe, has been studied in vitro [8]) 
is not necessary to model quite accurately the ob-
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served phenomenology of quenching the patho-
logical oscillations. We have succeeded in bringing 
the following facets of control theory successfully 
to bear on the problem: Liapunov’s theorem of 
the first approximation, the Root Locus method, 
the Describing Function, the Nyquist Criterion and 
the concept of the Equivalent Nonlinearity. These 
are all part of the stock-in-trade of engineers from 
many branches and all but the last are covered in 
very many undergraduate textbooks. The basic 
principles of the Equivalent Nonlinearity are dealt 
with in only two textbooks with which we are fa-
miliar [9, 10]. It was developed from a fairly primi-
tive base into a powerful problem-solving tool by 
Simpson and Power [11].

 

Fig. 1: Schematic of the basal ganglia.

 

Fig. 2: The feedback loop and DBS waveform used to study Parkin-

sonian oscillations.

	 In our studies of pathological oscillations in the 
basal ganglia we have followed the practice of 
characterizing them by the local field potential 
(LFP) which is the potential difference between 
an electrode placed in the close neighborhood 
of the oscillating cells and a reference electrode. 
We have been strongly influenced by the works 
of Rosenblum and Pikovsky [12] and David and 
Friston [13]. The former have shown in simulated 
interconnections of several thousand model neu-
rons that, when a certain coupling coefficient ex-
ceeds a threshold value, pathological oscillations 
ensue. These evolve in accordance with second 
order dynamics, which they analyze using ideas 
expounded by Kuramoto [14]. Further details and 
applications of some of the concepts invoked here 
are given in [15].
	 Control theory deals – inter alia – with the dy-
namics of oscillations in nonlinear feedback loops. 
This suggested to us the basic structure shown in 
Fig. 2. The sigmoid nonlinearity is very widely used 
in biological feedback loops [13, 16]. Symmetric 

and asymmetric sigmoids are found in the litera-
ture. We have chosen a symmetrical sigmoid here, 
which, in conjunction with the DBS waveform 
shown in Fig. 2, ensures that the Describing Func-
tions involved are real and positive.

	 We shall first of all analyze the onset and quench-
ing of oscillations in the feedback loop in Fig. 2 and 
then proceed to incorporate it into a phenomeno-
logical model of the ‘competing processes’ of sup-
pression and aggravation suggested by Cooper 
et al in connection with the response of ‘essential 
tremor’ to DBS [4].

 2. Methods
2.1 Genesis of Oscillations  
	 Invoking Liapunov’s theorem of the first approxi-
mation (which is valid here as we are not dealing 
with a ‘singular case’ [17]) we explore the genesis 
of oscillation in the feedback loop in Fig. 2 without 
DBS, using small signal analysis, i.e. y and u exhibit 
small deviations from zero. In such a case, the arc-
tan may be represented by its slope at the origin, 
2/rh. The linearized loop has characteristic polyno-
mia
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The root locus of  P(s) is shown on Fig. 3, for h
k
r  in-

creasing in the range 0 h
k 31 1
r . We suggest that h 

may be regarded as in 1:1 relation with dopamine 
in the basal ganglia. This has the following inter-
pretations:
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(2)

(3)

(4)

(5)

(6)

	 1.	 For ,
h
k b1
r  i.e.

k
bh 1 2r

the loop is asymptotically stable, exhibiting no os-
cillation.
 	 2.	 As  

k
bhr  passes through the critical valu

k
bh 1r =

two complex conjugate eigenvalues migrate into 
the right half plane, through the values

s jb!=

 	 3.	 For 

k
bh 1 1r

the linearized loop has a pair of complex conjugate 
eigenvalues in the right half plane. These indicate 
a sinusoidal oscillation multiplied by an amplitude 
increasing exponentially with time. As we shall 
show below by describing function analysis, the 
saturation inherent in the arctan function limits 
the amplitude, so that a stable, almost sinusoidal 
oscillation of angular frequency

b~ =

ensues.

Fig. 3: Root locus corresponding to (1).

2.2 The Describing Function and its Application
	 In using the Describing Function (DF), we assume 
that the oscillation in the output y of the nonlinear 
feedback loop in Fig. 2 (without DBS) may be ap-

proximated to a high degree of accuracy by the 
expression

siny Y tm ~= ] g (7)

( )12

(11)

(10)

( )9

(8)

( )13

	 Conditions for this to be so have been estab-
lished by Bergen and Franks [18]. They are satisfied 
comfortably here. Since the arctan

arctanu
h
y2

r
= b l

is an odd function of y, the signal u is an odd func-
tion of time. This means that its Fourier series con-
sists only of sine terms, at angular frequency ω and 
its harmonics. In fact, due to the symmetry proper-
ties of the sine and arctan, u(t) is an inverse-repeat 
function of t i.e.

u t u t
~
r+ =-b ]l g

and thus, only odd harmonics at angular frequen-
cies 3ω, 5ω, 7ω etc are generated along with the 
fundamental [10]. These are effectively filtered out 
by the G(s) block.
	 The fundamental component of u(t) is

sinu t U tf m ~=] ]g g

where, by standard Fourier analysis with symme-
tries applied,

arctan sin .sin .U
h

Y d4
m

m
2

0
r
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r

b l#

	 The DF is defined as the effective gain at funda-
mental frequency

DF Y
Y
U
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m=] g

	 The result here is 
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	 It follows from the definition of the DF as an ef-
fective gain that 

( 4)1lim limDF Y
dy
du

h
2

Y
m

y0 0m r
= =

" "
] g

 and this is readily confirmed in (13).
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	 The steady-state gain of the G(s) block for a si-
nusoid of angular frequency ω is G(jω). Thus, since 
the input to the nonlinearity and the output of the 
G(s) block are the same signal, y, the effective gain 
of the forward path under almost sinusoidal oscil-
lation must be unity, i.e. DF(Ym).G(jω)=1 or

( 8)1

( 7)1

( 6)1

( 5)1G j
DF Y
1

m

~ =]
]

g
g

Equation (15) is illustrated on Fig. 4.

 

Fig. 4: Diagram to illustrate the condition shown in (15).

	 Provided that h b
k

2 2
 1r , i.e. k

bh 1 1r
 (see (5)), the 

G(jω) and 
DF Y
1

m] g
 loci intersect on the positive real 

axis for 

b~ =
repeating (6), and 

Y
b
k

k
bh2 1m

r
r= -

For example, taking b=k, h=0.314 (i.e. ,
k
bh 0 9865r = ), 

(17) yields Y
m
=0.0741. The accuracy of this is shown 

in Fig. 5.
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Fig. 5: Comparison of simulated model oscillations with theoreti-

cal prediction from (17) taking b=k and h =0.314.
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	 An informal, but yet very often accurate applica-
tion of the Nyquist Criterion to Fig. 4 indicates that 
for

the ‘critical point’ DF Y
1

m] g  is encircled twice clock-
wise by the G(jω) locus and its conjugate, so that 
the closed loop is acting like a linear system having 
two eigenvalues in the right half plane. Thus, Y

m
 is 

increasing with time. On the other hand, for

( 1)2

( 0)2

( 9)1
b
k

DF Y2
1  

m

31 1
] g

the closed loop is acting like a linear system having 
both eigenvalues in the left half plane, and so Y

m
 is 

decreasing with time. These considerations show 
that the almost sinusoidal oscillation with ampli-
tude Y

m
 given by (17) and angular frequency ω=b, 

is a stable limit cycle.
2.3 Quenching the Oscillation 
	 We now consider the DBS waveform to be ap-
plied additively to y at the input to the nonlinearity, 
as shown in Fig. 2. Simpson and Power [11] have 
shown that, provided the DBS frequency, 1/T, lies 
well above the highest significant frequency in the 
spectrum of y(t), the effective value of u is its mean 
value u  over a DBS cycle. The original nonlinear-
ity and the DBS source may be replaced by the 
Equivalent Nonlinearity, u  vs y. Simpson and Pow-
er have developed a convolution type integral for 
calculating the equivalent nonlinearity, given any 
single-valued original nonlinear function and the 
DBS waveform [11]. With the simple DBS waveform 
employed here, however, which spends a fraction 
a of its cycle at the value a, a fraction a at the value 
-a and a fraction (1-2a) at the value 0, it is read-
ily appreciated that the equivalent nonlinearity is 
given by
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	 The DF corresponding to (20) has been evalu-
ated by us as

.
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where 
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2
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	 Despite its complicated appearance, the graph 
of DF(Ym) vs Ym decreases smoothly and mono-
tonically as Ym increases for all the parameter val-
ues encountered in this study (not necessarily 
for all parameter values). We have summarized in  
Fig. 6 the conditions for oscillation and non-
oscillation in terms of the relationship of DF(0) 
to G jb k

b1 2=
] g . Fig. 6 shows that the oscillation is 

quenched provided the DBS parameters   and   can 
realize the inequality
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	 Given a, the critical amplitude ac necessary for 
quenching is found by applying equality in (25):

a h
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	 Since the condition for oscillation is k
bh 1 1r

   (see 

(5) and (17)), (26) yields a real, positive value of ac 

only if a exceeds the critical value

k
bh

2

1
ca

r

=
-

Equation (27) and a scaled version of (26)

.a g acv c=

are illustrated in Fig. 7, where the scaling factor 
g converts our dimensionless ac to milliamps, as 
used in [19]. In fitting our curve to the experimen-
tal results, we have chosen b=k and calculated the 
values h=0.3168 and g=12.492 by minimizing a 
sum of squared errors criterion.
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2.4 Response of essential tremor to DBS 
	 Cooper et al. have reported a very intriguing 
study of the response of “essential tremor” to DBS 
[4]. They found that the amplitude of tremor de-
creased at first, but then increased again as DBS 
voltage increased. They suggested that this could 
be due to “competing processes” of tremor sup-
pression and tremor aggravation. We present here 
our first attempt to model this. The suppression 
mechanism is taken to be the same as for Parkin-
son’s disease, discussed above. The aggravation 
mechanism is modeled by the nonlinear feedback 
loop shown in Fig. 9. As before, each linear dynami-
cal block has transfer function G s

s b
ks

2=
+

]
]

g
g

. The el-
ement subjected to DBS additively at its input is 
taken to be

(3 )1

(30)

( 9)2u x gx3= +

for which, paralleling (20), the equivalent nonlin-
earity is 

.u ga x gx1 6 2 3a= + +6 @
S
	 Corresponding to sinx X tm ~= ] g, the describing 
function is

.DF X ga g X1 6
4
3

m m
2 2a= + +] g 6 @

 

Fig. 9: Nonlinear feedback loop used to model the tremor aggrava-

tion mechanism discovered by Cooper et al. [4]

	 The increase as ac is the key to this application. 
As before, it can be shown that the “aggravation” 
loop supports an almost sinusoidal oscillation of 
angular frequency ω=b. The amplitude of the fun-
damental at the output of the bang bang element 
is M4
r

 and G jb
b
k
2

=] g . Thus

( 2)3

( 3)3

X
b
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m
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component of u . Multiplying this by G(jb) gives
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	 Cooper et al. found a minimum point in the curve 
of 

( 4)3log . ,
tremoramplitudewithnoDBS

tremoramplitude
vs Amplitudeof DBS volts V20 10 ] g< F

near the value V=1 [4]. We propose that

tremor amplitude Y a wZ am m= +] ]g g ( 5)3

( 6)3

where: Ym is output amplitude of the tremor sup-
pression loop, which we assume is identical with 
that for Parkinson’s disease, and that Zm is given by 
(33). To achieve 1:1 scaling between volts, V and 
our dimensionless stimulation amplitude, a, we 
assume that the suppression loop is quenched at 
a=1. Applying equality in (25) and setting b=k as 
we did following (17), the result is
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	 This gives the equation
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	 Taking a=0.024, a value used in several experi-
ments in [4], this has a sole positive real root at

,h 0 3043=
This is a suitable value of h to give Parkinsonian-like 
oscillations as it gives ,

k
bh 0 956 1 1r = . We propose, 

therefore, our counterpoint of the Cooper et al. 
curve:
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(42)Z g0 1 3m = +] g

	 Setting b=k in (41) and, in addition setting 
k
M 1=  

(which, in retrospect we have found to be reason-
able, at least in this first attempt to model the ag-
gravation process), (41) simplifies to

	 The parameters g and w have to be determined. 
For a=0, the left hand side of (39) is 20log10(1)=0, 
as in the graph given by Cooper et al. For a=1, we 
have

(43)
log
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	 The figure of -3,5dB comes from Fig. 1 in [4]. Tak-
ing the antilog, (43) gives the first equation in w 
and wg:

( 4)4

( 5)4

( 6)4

( 7)4

, , ,w wg0 0893 0 3317 1 139= +

Matching the a=4 point from the results in [4] gives
which leads to the second equation in w and wg:

log
,

,
w g

w g
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110
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The solutions for w and g are

, , ,w wg0 119 0 1088 2 6302= +
	 The resulting curve corresponding to (39) is 

, ,w andg0 1325 0 3001= =

shown in Fig. 10. Some points from Cooper et al. 
are superimposed

3. Conclusion

 

Fig. 10: Illustration of the competing processes model with six 

points estimated from Fig. 1 from [4].

	 By using well-established techniques from clas-
sical control theory, we have managed to give a 
reasonably accurate account of the phenomena 
associated with the evolution and quenching of 

pathological neural oscillations in the brain, associ-
ated with Parkinson’s disease and Essential Tremor. 
There is little doubt that parallel treatments could 
be given for other conditions. The clinical implica-
tions of our work have yet to be established. One 
interesting finding, matching with very good accu-
racy our conversion of results due to Benabid et al 
[1991], is the observation that the critical DBS am-
plitude for quenching oscillations in the Basal Gan-
glia decreases monotonically with fractional pulse 
width, but with a “law of diminishing returns.” A 
simple calculation (left to the reader!), establishes 
that the same observation applies to the energy 
needed to generated the DBS signal, which would 
be minimized if α had its maximum possible value 
of 0.5. This, if it could be tolerated clinically, would 
have the great benefit to the patient of maximizing 
the time--currently between two and three years-
-between the operations needed to replace the 
stimulator when its battery has expired. In our phe-
nomenological model of the aggravation mecha-
nism in essential tremor, the parameters M and g 
are the principal culprits. It would be fascinating to 
know if these have any physiological significance 
and whether any benign intervention could re-
duce either or both of them.
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