
56 VOLUME 17, No. 3, 2013

BIOGRAPHICAL NOTES
Dr.h.c. mult. Prof. Ing. Jozef Živčák, PhD. Is a professor of biomedical engineering at
the Technical University of Košice. He was born in 1958. He received his MS and PhD.
degrees from Technical University of Košice in 1995. He is from 2009 Doctor Honoris
Causa of Uzhorod National University. His research interests include human biome-
chanics, medical sensorics, medical thermography and rehabilitation technology. To-
day he is head of head of Department of Biomedical Engineering and Measurement.
Since 1998 he is an expert witness in machine and electrical technology. Professor
has more than 280 publications in home and foreign journals. He is an author and co-
author of 9 monographies and 12 books.
Tatiana Kelemenová, doc. Ing. PhD. She received M.S. degree in mechanical en-
gineering from Technical University of Košice, Slovakia in 1996 and Ph.D. degree in
Mechatronics from Technical University of Košice, Slovakia in 2005.She is a assistant
of the Department of Biomedical Engineering, Automation and Measurement at the
Faculty of Mechanical Engineering at the Technical University of Košice, Slovakia. His
research interests include engineering metrology, measurement systems, uncertainty
of measurements, mechatronic systems, and measurement of non-electric quantities.
He has authored more than 100 journal and conference papers on these topics.
Michal Kelemen, doc. Ing. PhD. IReceived M.S. degree in mechanical engineering
from Technical University of Košice, Slovakia in 1998 and Ph.D. degree in Mechatronics
from Technical University of Košice, Slovakia in 2002.He is an associated professor of
the Department of Applied Mechanics and Mecharonics at the Faculty of Mechanical
Engineering at the Technical University of Košice, Slovakia. He has been awarded the
1998 “Price of the VolksBank” for the best M.S. graduate and 2007 Price “Scienist of the
year”. His research interests include mechatronic systems, intelligent robotic systems,
dust mass concentration measurement, measurement of non-electric quantities, and
microcomputer systems. He has authored more than 180 journal and conference pa-
pers on these topics.
Vladislav Maxim, doc. Ing. PhD. Received M.S. degree in electrical engineering from
Technical University of Košice, Slovakia in 1984 and Ph.D. degree in Power semicon-
ductor systems from Technical University of Košice, Slovakia in 2002. He is an associ-
ated professor of the Department of Automation and Control and Communication In-
terfaces at the Faculty of Mechanical Engineering at the Technical University of Košice,
Slovakia. He has been awarded the Werner von Siemens Excellence Award 2005. His
research interests include automation, servosystems, electrical Drives design, electri-
cal equipmed of the electric vehicles, switched reluctance motor, power electronic
and electrical CAD systems. He has authored more than 80 journal and conference
papers on these topics.

Model-based Approach to
Development of Engineering Systems

Jozef Živčák, Tatiana Kelemenová*, Michal Kelemen and Vladislav Maxim

Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice

Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

57

KEY WORDS
Model-based development, dSpace, HIL simula-
tions, Matlab.

ABSTRACT
The control functions for most engineering sys-
tems (automotives, aeroplanes, medical devices
and other devices involve large quantities of soft-
ware. Because of the great complexity involved and
the safety requirements, manufacturers must abso-
lutely guarantee that the device software has ex-
actly the functions that were specified and that the
functions work as defined. Thus, the specifications
themselves must contain unambiguous, com-
prehensive function descriptions. Model-based
development, in which a function is described
by graphical models in MATLAB®/Simulink®/State-
flow®, is a proven method of implementing these
requirements.

1. Introduction
	 Model-Based Design is a process that enables
faster, more cost-effective development of dynam-
ic systems, including control systems, signal pro-
cessing, and communications systems. In Model-
Based Design, a system model is at the center of
the development process, from requirements de-
velopment, through design, implementation, and
testing. The model is an executable specification
that you continually refine throughout the devel-
opment process. After model development, simu-
lation shows whether the model works correctly.
When software and hardware implementation re-
quirements are included, such as fixed-point and
timing behavior, you can automatically generate
code for embedded deployment and create test
benches for system verification, saving time and
avoiding the introduction of manually coded er-
rors [1-5].
Model-Based Design (fig. 1) allows you to improve
efficiency by:
using a common design environment across
project teams,
linking designs directly to requirements,
integrating testing with design to continuously
identify and correct errors,
refining algorithms through multi-domain simu-
lation,
automatically generating embedded software
code,

developing and reusing test suites,
automatically generating documentation,
Reusing designs to deploy systems across mul-
tiple processors and hardware targets.

Fig. 1: Model based design philosophy [5].

	 Model-Based Design helps engineers achieve
certification to safety standards by supporting
requirements traceability, verification, and docu-
mentation. These capabilities span multiple design
stages. For example, requirements linked to model
are inserted as comments in generated code. Qual-
ification kits, available for several verification tools,
can reduce the amount of manual review needed.
It is also increasingly common for organizations
to adopt Model-Based Design on large programs
spanning multiple organizations. This allows sys-
tem-level performance to be assessed and inte-
gration issues to be uncovered much earlier in the
design process.
	 When detailed models from multiple organiza-
tions are combined, resulting models can contain
hundreds of thousands of blocks. Modeling tools
have evolved to meet these challenges with im-
proved support for large-scale modeling, including
support for composite models from other model
files and support for signal buses.
	 When organizations adopt Model-Based Design,
they improve product quality and reduce devel-
opment time by 50% or more. It also causes that
product will be cheaper and more competitive on
market [1-5].

2. Model Based Design Process Steps
	 In generally, there are six steps to modeling any
system:
Defining the System
Identifying System Components
Modeling the System with Equations

58 VOLUME 17, No. 3, 2013

Building the model
Running the Simulation
Validating the Simulation Results
	 We perform the first three steps of this process
outside of the software environment before we
begin building our model. Mainly, these first three
steps are important and many people make mis-
takes in these steps. Finally, when system is mod-
eled through the equations, next building of the
model is more or less routine operation. It is im-
portant to say that every model is not perfect and
every time we have to neglect any points and sim-
plify system description. Overall process requires
the experiences. When we will try to make abso-
lutely prefect model, very complicated model and
slowly simulation will be as the result of them [2].
	 Defining of the system - the first step in model-
ing a dynamic system is to fully define the system. If
we are modeling a large system that can be broken
into parts, we should model each subcomponent
on its own. Then, after building each component,
we can integrate them into a complete model of
the system.
	 Identifying System Components - the second
step in the modeling process is to identify the
system components. Three types of components
define a system: parameters (system values that
remain constant unless you change them), states
(variables in the system that change over time),
and signals (input and output values that change
dynamically during a simulation).
	 Modeling the System with Equations - the third
step in modeling a system is to formulate the
mathematical equations that describe the system.
For each subsystem, use the list of system com-
ponents that we identified to describe the system
mathematically. Model may include: algebraic
equations, logical equations, differential equations,
for continuous systems and difference equations,
for discrete systems etc.
	 Building the Simulink Block Diagram - after we
have defined the mathematical equations that
describe each subsystem, we can begin building
a block diagram of our model for example in MAT-
LAB/Simulink. Build the block diagram for each
of our subcomponents separately. After we have
modeled each subcomponent, we can then inte-
grate them into a complete model of the system.
Running the Simulation - after we build the Simu-
link block diagram, we can simulate the model and

analyze the results. Simulink allows us to interac-
tively define system inputs, simulate the model,
and observe changes in behavior. This allows us to
quickly evaluate your model.
Validating the Simulation Results - finally, we must
validate that our model accurately represents the
physical characteristics of the dynamic system. We
can use the linearization and trimming tools avail-
able from the MATLAB command line, plus the
many tools in MATLAB and its application toolbox-
es to analyze and validate our model.

Fig. 2: Early verification as part of Model-Based Design streamlines

embedded control design with modeling, simulation, and auto-

matic code generation [4].

	 Model-Based Design with MATLAB and Simulink
is an efficient and cost-effective way to develop
complex embedded systems in aerospace, auto-
motive, communications, and other industries. It
enables system- and component-level design and
simulation, automatic code generation, and con-
tinuous test and verification. [2].
	 Plant models provide another perspective on the
system. Modeling the non-software parts of the
system gives engineers another view into system
behavior. Engineers can often learn more about
system dynamics through simulation than from
the real system because simulation provides de-
tails on force, torque, current, and other values that
are difficult or impossible to measure on the actual
hardware [4].
	 Creating plant models requires engineering ef-
fort, but this effort is often overestimated, while
the value provided by plant modeling is under-
estimated. When developing plant models, it is a
best practice to start at a high level of abstraction
and add details as needed. Choosing a level of ab-
straction that is just detailed enough to produce
the needed results saves modeling effort as well as

Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

59

simulation time (see Figure 2) [2, 4].
	 System behavior is defined not only by the em-
bedded control software, but also by the elec-
tronic and mechanical components, including the
connected sensors and actuators. Early simulations
in which the architecture is executed provide more
insight when they are performed in a closed loop
with plant or environment models. System-level
optimization requires multi-domain simulations.
It is impossible to optimize today’s sophisticated
systems by tuning one parameter at a time. To de-

liver maximum energy efficiency and highest per-
formance at minimal material cost, engineers must
optimize the system as a whole, and not just the
embedded software [1, 2, 4].
	 Our research is focused on mechatronics sys-
tems and robotic devices. Example of built multi-
domain simulink model of in-pipe micromachine
is shown on figure3. As it is shown, model contains
many nonlinearities and discontinuities. The model
has been built for optimization of machine and for
control design.

Fig. 3: Example of multi-domain simulation model of in-pipe machine in Matlab/Simulink.

Fig. 4: (a) Micromachine velocity in time. (b) Relative magnet motion with respect to driven body.

	 The main purpose of this model is to study mi-
cromachine behaviour in various situations. The
main purpose of this model is to study microma-

chine behaviour in various situations. This model
also can give answer (fig. 4) to the many questions
(How should be values of input variables? Where

60 VOLUME 17, No. 3, 2013

is the weakness of the micromachine?, How is the
velocity of machine? etc.)

3. Simulation Modes
	 There are different simulation modes (fig. 5) for
the model (model-in-the-loop (MIL) simulation),
the host implementation (software-in-the-loop (SIL)
simulation) and the target implementation (proces-
sor-in-the-loop (PIL) simulation).
	 These methods (fig. 5) avoid work-intensive itera-
tions in later development phases, and save time
and money by:

Fig. 5: (a) Add a descriptive label of the figure here. (b) Add a descriptive label of the figure here. (c) Add a descriptive label of the figure here.

Fig. 6: (a) The Components Required for High-Speed Simulation of

the Electric Machine (b) Typical architecture for Hardware-in-the-

loop HIL simulations [7, 8]

Verifying at an early stage, by means of model
simulation, that the model and requirement are
correct
Verifying that the code and the mode are con-
sistent, and that the code correctly represents the
model’s functionality, by simulating the generated
code on the host PC
Verifying seamless traceability for documenting
the software development
Allowing resource requirements to be estimated
at an early stage by simulating the code on the ap-
propriate evaluation hardware

4. Hardware-in-the-loop Simulation
 Not only is the number of electronic control units
(ECUs) in modern vehicles constantly increasing,
the software of the ECUs is also becoming more
complex. Both make testing a central task within
the development of automotive electronics. Test-
ing ECUs in real vehicles is time-consuming and
costly, and comes very late in the automotive de-
velopment process. It is therefore increasingly be-
ing replaced by laboratory tests using hardware-
in-the-loop (HIL) simulation (fig. 6).
	 Time to market is speeding up, especially in auto-
motive electronics. 90% of automotive innovations
are currently connected with new electronics. Test
drives can scarcely cope with the volume of sys-
tematic testing needed, especially just before start
of production. The growing number of recall cam-
paigns is a clear indication of this. It is little wonder
that testing and error finding have become key
tasks in the development process.
	 ECU testing typically is done using hardware-in-
the-loop simulation. The ECU (prototype) is con-

Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

61

Fig. 7: dSpace system for HIL simulation [2]

nected to a real-time simulation system simulating
the plant (engine, vehicle dynamics, transmission,
etc.) or even the whole vehicle.
	 As HIL has become a standard method for test-
ing ECUs and control strategies during the whole
development cycle (i.e., not only after availability
of the final ECUs), different needs of different users
have to be addressed by the various test systems
[7, 8].
	 The dSPACE software components are standard-
ized and can be integrated in any dSPACE simula-
tor. The tight integration of dSPACE software and
the modeling tool MATLAB®/Simulink® from The
MathWorks provides a powerful development en-
vironment.
	 dSPACE Simulator’s graphical user interface
provides a convenient and flexible environment.
Simulated driving cycles, data acquisition, instru-
mentation, monitoring, test automation and all
other tasks are executed graphically within dSPACE
Simulator. The hardware requirements, however,
vary immensely depending on the HIL application.
For example, function tests typically are executed
with simulators that have a fixed (super)set of I/O,
and adaptations to the ECU are most often made
in the cable harness. In contrast, acceptance tests
call for flexible and combinable simulator setups
[7, 8].

tion to verification, leveraging executable system
models that unambiguously specify functional and
physical requirements.
	 In traditional design flows, there can be no sys-
tematic testing of the entire system until it has been
fully implemented. As a result, bugs remain hidden
until late in the system development, when fixing
them is significantly more costly and disruptive.
	 In contrast, model-based design enables system
test and debug from the earliest stage of develop-
ment, when most flaws are introduced. Models can
be validated early on through simulation and veri-
fied continuously as the component models are re-
fined with additional implementation detail. C, HDL
and Spice implementations, as well as ESL models,
can be incorporated to support existing workflows,
design reuse and final integration testing. Com-
ponents from different design teams can be inte-
grated as they become available, ensuring that any
changes do not degrade system performance and
that bugs can be quickly isolated to the offending
component [6-9].

6. Acknowledge
	 The authors would like to thank to Slovak Grant
Agency – project APVV-0091-11, VEGA 1/1205/12.
This contribution is also the result of the project
implementation: Centre for research of control of
technical, environmental and human risks for per-
manent development of production and products
in mechanical engineering (ITMS:26220120060)
supported by the Research & Development Opera-
tional Programme funded by the ERDF.

7. References
[1]	 dSpace GmbH. Model-Based Development of Safety-Criti-

cal Software: Safe and Efficient Translation of “Sicherheitskri-

tische Software entwickeln” Published at: MEDengineering,

06/2012. available online at http://www.dspace.com.

[2]	 The MathWorks, Inc., Model-Based Design. Documentation

Center. Cited 07-11-2013. Available online. http://www.

mathworks.com/help/simulink/gs/model-based-design.

html

[3]	 Otterbach, R.: Automotive Solutions, Systems and Applica-

tions. dSPACE GmbH. 2013. Available online. http://www.

dspace.com.

[4]	 Sandmann, G., Schlosser, J., Maximizing the benefits of

Model-Based Design through early verification. Embed-

ded Computing Design. An OpenSystems Media publica-

tion. Available online. Page last refreshed: Mon, 08 Jul 2013

5. Conclusion
	 Model-based design comprises four elements:
modeling of desired behavior or reference designs;
design exploration and refinement through simu-
lation; implementation with code generation; and
continuous test and verification throughout the
development process. These elements address the
design and verification issues inherent in today’s
electronic systems by letting engineers progress
systematically from specification to implementa-

62 VOLUME 17, No. 3, 2013

05:04:12. http://embedded-computing.com/articles/maxi-

mizing-benefits-model-based-design-early-verification/#

[5]	 MathWorks, Inc., Evolution of model-based design in aero-

space. IML Group PLC. Available online. http://www.epd-

tonthenet.net/article/41911/Evolution-of-model-based-

design-in-aerospace.aspx

[6]	 Karnofsky, K., Putting the system in electronic system de-

sign. EETimes Newsletter 2/4/2008, UBM Tech. Also avail-

able online. Cited 07-11-2013. http://www.eetimes.com/

document.asp?doc_id=1271606

[7]	 Köhl, S, Jegminat, D., How to Do Hardware-in-the-Loop

Simulation Right. dSPACE GmbH. SAE International. 2005.

2005 SAE World Congress Detroit, Michigan, April 11-14,

2005. SAE Technical paper series. Reprinted From: Control-

ler System Software Testing and Validation (SP-1928). ISSN

0148-7191.

[8]	 Dhaliwal, A., Nagaraj, S., Jogi, S., Hardware-in-the-Loop Test-

ing for Hybrid Vehicles. dSPACE GmbH, Evaluation Engineer-

ing, November 2009, NP Communications, LLC. dSPACE,

50131 Pontiac Trail, Wixom, MI 48393. Also available online.

Cited 07-11-2013. http://www.evaluationengineering.com/

articles/200911/hardware-in-the-loop-testing-for-hybrid-

vehicles.php

[9]	 Trebuňa, F., Šimčák, F., Handbook of experimental mechan-

ics. 1st edition. Košice : TU of Kosice, Fac. Of Mech. Eng.

2007. 1526 pages. ISBN 970-80-8073-816-7.Fields Method

To Noisy Data. Comput. Mech., 34(6):439-452, 2004.

[10]	 Grédiac, M. - Pierron, F.: Applying The Virtual Fields Method

To The Identification Of Elasto-Plastic Constitutive Param-

eters. Int. J. Plasticity, 22:602-627, 2006.

[11]	 Sutton, M.A. - Deng, X. - Liu, J. - Yang, L.: Determination of

Elastic-Plastic Stresses And Strains From Measured Surface

Strain Data. Experimental Mechanics, 36(2):99–112, 1996.

[12]	 http://books.google.com/books?id=52v7jea3aqic&pri

ntsec=frontcover&dq=matlab&hl=sk&sa=x&ei=11tst4-

nky6l4gtqlsm_ag&ved=0cdgq6aewaq#v=onepage&q=ma

tlab&f=true

[13]	 Swift, H.W.: “Plastic Instability Under Plane Stress”, Journal Of

The Mechanics And Physics Of Solids, Vol. 1, 1952, Pp. 1-18.

[14]	 Wang, J. - Levkovitch, V. - Reusch, F. - Svendsen, B.: Modeling

And Simulation Of Directional Hardening In Metals During

Non-Proportional Loading; Journal Of Materials Processing

Technology 176, 2006, 430–432.

