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ABSTRACT
The control functions for most engineering sys-
tems (automotives, aeroplanes, medical devices 
and other devices involve large quantities of soft-
ware. Because of the great complexity involved and 
the safety requirements, manufacturers must abso-
lutely guarantee that the device software has ex-
actly the functions that were specified and that the 
functions work as defined. Thus, the specifications 
themselves must contain unambiguous, com-
prehensive function descriptions. Model-based 
development, in which a function is described 
by graphical models in MATLAB®/Simulink®/State-
flow®, is a proven method of implementing these 
requirements.

1. Introduction 
	 Model-Based Design is a process that enables 
faster, more cost-effective development of dynam-
ic systems, including control systems, signal pro-
cessing, and communications systems. In Model-
Based Design, a system model is at the center of 
the development process, from requirements de-
velopment, through design, implementation, and 
testing. The model is an executable specification 
that you continually refine throughout the devel-
opment process. After model development, simu-
lation shows whether the model works correctly.
When software and hardware implementation re-
quirements are included, such as fixed-point and 
timing behavior, you can automatically generate 
code for embedded deployment and create test 
benches for system verification, saving time and 
avoiding the introduction of manually coded er-
rors [1-5].
Model-Based Design (fig. 1) allows you to improve 
efficiency by:
using a common design environment across 
project teams,
linking designs directly to requirements,
integrating testing with design to continuously 
identify and correct errors,
refining algorithms through multi-domain simu-
lation,
automatically generating embedded software 
code,

developing and reusing test suites,
automatically generating documentation,
Reusing designs to deploy systems across mul-
tiple processors and hardware targets.

 

Fig. 1: Model based design philosophy [5].

	 Model-Based Design helps engineers achieve 
certification to safety standards by supporting 
requirements traceability, verification, and docu-
mentation. These capabilities span multiple design 
stages. For example, requirements linked to model 
are inserted as comments in generated code. Qual-
ification kits, available for several verification tools, 
can reduce the amount of manual review needed.
It is also increasingly common for organizations 
to adopt Model-Based Design on large programs 
spanning multiple organizations. This allows sys-
tem-level performance to be assessed and inte-
gration issues to be uncovered much earlier in the 
design process.
	 When detailed models from multiple organiza-
tions are combined, resulting models can contain 
hundreds of thousands of blocks. Modeling tools 
have evolved to meet these challenges with im-
proved support for large-scale modeling, including 
support for composite models from other model 
files and support for signal buses.
	 When organizations adopt Model-Based Design, 
they improve product quality and reduce devel-
opment time by 50% or more. It also causes that 
product will be cheaper and more competitive on 
market [1-5].

2. Model Based Design Process Steps 
	 In generally, there are six steps to modeling any 
system:
Defining the System
Identifying System Components
Modeling the System with Equations
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Building the model
Running the Simulation
Validating the Simulation Results
	 We perform the first three steps of this process 
outside of the software environment before we 
begin building our model. Mainly, these first three 
steps are important and many people make mis-
takes in these steps. Finally, when system is mod-
eled through the equations, next building of the 
model is more or less routine operation. It is im-
portant to say that every model is not perfect and 
every time we have to neglect any points and sim-
plify system description. Overall process requires 
the experiences. When we will try to make abso-
lutely prefect model, very complicated model and 
slowly simulation will be as the result of them [2].
	 Defining of the system - the first step in model-
ing a dynamic system is to fully define the system. If 
we are modeling a large system that can be broken 
into parts, we should model each subcomponent 
on its own. Then, after building each component, 
we can integrate them into a complete model of 
the system.
	 Identifying System Components - the second 
step in the modeling process is to identify the 
system components. Three types of components 
define a system: parameters (system values that 
remain constant unless you change them), states 
(variables in the system that change over time), 
and signals (input and output values that change 
dynamically during a simulation).
	 Modeling the System with Equations - the third 
step in modeling a system is to formulate the 
mathematical equations that describe the system. 
For each subsystem, use the list of system com-
ponents that we identified to describe the system 
mathematically. Model may include: algebraic 
equations, logical equations, differential equations, 
for continuous systems and difference equations, 
for discrete systems etc.
	 Building the Simulink Block Diagram - after we 
have defined the mathematical equations that 
describe each subsystem, we can begin building 
a block diagram of our model for example in MAT-
LAB/Simulink. Build the block diagram for each 
of our subcomponents separately. After we have 
modeled each subcomponent, we can then inte-
grate them into a complete model of the system.
Running the Simulation - after we build the Simu-
link block diagram, we can simulate the model and 

analyze the results. Simulink allows us to interac-
tively define system inputs, simulate the model, 
and observe changes in behavior. This allows us to 
quickly evaluate your model.
Validating the Simulation Results - finally, we must 
validate that our model accurately represents the 
physical characteristics of the dynamic system. We 
can use the linearization and trimming tools avail-
able from the MATLAB command line, plus the 
many tools in MATLAB and its application toolbox-
es to analyze and validate our model. 

 

Fig. 2: Early verification as part of Model-Based Design streamlines 

embedded control design with modeling, simulation, and auto-

matic code generation [4].

	 Model-Based Design with MATLAB and Simulink 
is an efficient and cost-effective way to develop 
complex embedded systems in aerospace, auto-
motive, communications, and other industries. It 
enables system- and component-level design and 
simulation, automatic code generation, and con-
tinuous test and verification. [2].
	 Plant models provide another perspective on the 
system. Modeling the non-software parts of the 
system gives engineers another view into system 
behavior. Engineers can often learn more about 
system dynamics through simulation than from 
the real system because simulation provides de-
tails on force, torque, current, and other values that 
are difficult or impossible to measure on the actual 
hardware [4].
	 Creating plant models requires engineering ef-
fort, but this effort is often overestimated, while 
the value provided by plant modeling is under-
estimated. When developing plant models, it is a 
best practice to start at a high level of abstraction 
and add details as needed. Choosing a level of ab-
straction that is just detailed enough to produce 
the needed results saves modeling effort as well as 
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simulation time (see Figure 2) [2, 4].
	 System behavior is defined not only by the em-
bedded control software, but also by the elec-
tronic and mechanical components, including the 
connected sensors and actuators. Early simulations 
in which the architecture is executed provide more 
insight when they are performed in a closed loop 
with plant or environment models. System-level 
optimization requires multi-domain simulations. 
It is impossible to optimize today’s sophisticated 
systems by tuning one parameter at a time. To de-

liver maximum energy efficiency and highest per-
formance at minimal material cost, engineers must 
optimize the system as a whole, and not just the 
embedded software [1, 2, 4].
	 Our research is focused on mechatronics sys-
tems and robotic devices. Example of built multi-
domain simulink model of in-pipe micromachine 
is shown on figure3. As it is shown, model contains 
many nonlinearities and discontinuities. The model 
has been built for optimization of machine and for 
control design.

Fig. 3: Example of multi-domain simulation model of in-pipe machine in Matlab/Simulink.

Fig. 4: (a) Micromachine velocity in time. (b) Relative magnet motion with respect to driven body.

	 The main purpose of this model is to study mi-
cromachine behaviour in various situations. The 
main purpose of this model is to study microma-

chine behaviour in various situations. This model 
also can give answer (fig. 4) to the many questions 
(How should be values of input variables? Where 
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is the weakness of the micromachine?, How is the 
velocity of machine? etc.)

3. Simulation Modes
	 There are different simulation modes (fig. 5) for 
the model (model-in-the-loop (MIL) simulation), 
the host implementation (software-in-the-loop (SIL) 
simulation) and the target implementation (proces-
sor-in-the-loop (PIL) simulation). 
	 These methods (fig. 5) avoid work-intensive itera-
tions in later development phases, and save time 
and money by:

Fig. 5: (a) Add a descriptive label of the figure here. (b) Add a descriptive label of the figure here. (c) Add a descriptive label of the figure here.

 

Fig. 6: (a) The Components Required for High-Speed Simulation of 

the Electric Machine (b) Typical architecture for Hardware-in-the-

loop HIL simulations [7, 8]

Verifying at an early stage, by means of model 
simulation, that the model and requirement are 
correct
Verifying that the code and the mode are con-
sistent, and that the code correctly represents the 
model’s functionality, by simulating the generated 
code on the host PC
Verifying seamless traceability for documenting 
the software development
Allowing resource requirements to be estimated 
at an early stage by simulating the code on the ap-
propriate evaluation hardware

4. Hardware-in-the-loop Simulation
 Not only is the number of electronic control units 
(ECUs) in modern vehicles constantly increasing, 
the software of the ECUs is also becoming more 
complex. Both make testing a central task within 
the development of automotive electronics. Test-
ing ECUs in real vehicles is time-consuming and 
costly, and comes very late in the automotive de-
velopment process. It is therefore increasingly be-
ing replaced by laboratory tests using hardware-
in-the-loop (HIL) simulation (fig. 6).
	 Time to market is speeding up, especially in auto-
motive electronics. 90% of automotive innovations 
are currently connected with new electronics. Test 
drives can scarcely cope with the volume of sys-
tematic testing needed, especially just before start 
of production. The growing number of recall cam-
paigns is a clear indication of this. It is little wonder 
that testing and error finding have become key 
tasks in the development process.
	 ECU testing typically is done using hardware-in-
the-loop simulation. The ECU (prototype) is con-
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Fig. 7: dSpace system for HIL simulation [2]

nected to a real-time simulation system simulating 
the plant (engine, vehicle dynamics, transmission, 
etc.) or even the whole vehicle.
	 As HIL has become a standard method for test-
ing ECUs and control strategies during the whole 
development cycle (i.e., not only after availability 
of the final ECUs), different needs of different users 
have to be addressed by the various test systems 
[7, 8].
	 The dSPACE software components are standard-
ized and can be integrated in any dSPACE simula-
tor. The tight integration of dSPACE software and 
the modeling tool MATLAB®/Simulink® from The 
MathWorks provides a powerful development en-
vironment.
	 dSPACE Simulator’s graphical user interface 
provides a convenient and flexible environment. 
Simulated driving cycles, data acquisition, instru-
mentation, monitoring, test automation and all 
other tasks are executed graphically within dSPACE 
Simulator. The hardware requirements, however, 
vary immensely depending on the HIL application. 
For example, function tests typically are executed 
with simulators that have a fixed (super)set of I/O, 
and adaptations to the ECU are most often made 
in the cable harness. In contrast, acceptance tests 
call for flexible and combinable simulator setups 
[7, 8].

tion to verification, leveraging executable system 
models that unambiguously specify functional and 
physical requirements.
	 In traditional design flows, there can be no sys-
tematic testing of the entire system until it has been 
fully implemented. As a result, bugs remain hidden 
until late in the system development, when fixing 
them is significantly more costly and disruptive.
	 In contrast, model-based design enables system 
test and debug from the earliest stage of develop-
ment, when most flaws are introduced. Models can 
be validated early on through simulation and veri-
fied continuously as the component models are re-
fined with additional implementation detail. C, HDL 
and Spice implementations, as well as ESL models, 
can be incorporated to support existing workflows, 
design reuse and final integration testing. Com-
ponents from different design teams can be inte-
grated as they become available, ensuring that any 
changes do not degrade system performance and 
that bugs can be quickly isolated to the offending 
component [6-9].

6. Acknowledge
	 The authors would like to thank to Slovak Grant 
Agency – project APVV-0091-11, VEGA 1/1205/12. 
This contribution is also the result of the project 
implementation: Centre for research of control of 
technical, environmental and human risks for per-
manent development of production and products 
in mechanical engineering (ITMS:26220120060) 
supported by the Research & Development Opera-
tional Programme funded by the ERDF.

7. References
[1]	 dSpace GmbH. Model-Based Development of Safety-Criti-

cal Software: Safe and Efficient Translation of “Sicherheitskri-

tische Software entwickeln” Published at: MEDengineering, 

06/2012. available online at http://www.dspace.com.

[2]	 The MathWorks, Inc., Model-Based Design. Documentation 

Center. Cited 07-11-2013. Available online. http://www.

mathworks.com/help/simulink/gs/model-based-design.

html

[3]	 Otterbach, R.: Automotive Solutions, Systems and Applica-

tions. dSPACE GmbH. 2013. Available online. http://www.

dspace.com.

[4]	 Sandmann, G., Schlosser, J., Maximizing the benefits of 

Model-Based Design through early verification. Embed-

ded Computing Design. An OpenSystems Media publica-

tion. Available online. Page last refreshed: Mon, 08 Jul 2013 

5. Conclusion
	 Model-based design comprises four elements: 
modeling of desired behavior or reference designs; 
design exploration and refinement through simu-
lation; implementation with code generation; and 
continuous test and verification throughout the 
development process. These elements address the 
design and verification issues inherent in today’s 
electronic systems by letting engineers progress 
systematically from specification to implementa-



62 VOLUME 17, No. 3,  2013

05:04:12. http://embedded-computing.com/articles/maxi-

mizing-benefits-model-based-design-early-verification/#

[5]	 MathWorks, Inc., Evolution of model-based design in aero-

space. IML Group PLC. Available online. http://www.epd-

tonthenet.net/article/41911/Evolution-of-model-based-

design-in-aerospace.aspx

[6]	 Karnofsky, K., Putting the system in electronic system de-

sign. EETimes Newsletter 2/4/2008, UBM Tech. Also avail-

able online. Cited 07-11-2013. http://www.eetimes.com/

document.asp?doc_id=1271606

[7]	 Köhl, S, Jegminat, D., How to Do Hardware-in-the-Loop 

Simulation Right. dSPACE GmbH. SAE International. 2005. 

2005 SAE World Congress Detroit, Michigan, April 11-14, 

2005. SAE Technical paper series. Reprinted From: Control-

ler System Software Testing and Validation (SP-1928). ISSN 

0148-7191.

[8]	 Dhaliwal, A., Nagaraj, S., Jogi, S.,  Hardware-in-the-Loop Test-

ing for Hybrid Vehicles. dSPACE GmbH, Evaluation Engineer-

ing, November 2009, NP Communications, LLC. dSPACE, 

50131 Pontiac Trail, Wixom, MI 48393. Also available online. 

Cited 07-11-2013. http://www.evaluationengineering.com/

articles/200911/hardware-in-the-loop-testing-for-hybrid-

vehicles.php

[9]	 Trebuňa, F., Šimčák, F., Handbook of experimental mechan-

ics. 1st edition. Košice : TU of Kosice, Fac. Of Mech. Eng. 

2007. 1526 pages. ISBN 970-80-8073-816-7.Fields Method 

To Noisy Data. Comput. Mech., 34(6):439-452, 2004.

[10]	 Grédiac, M. - Pierron, F.: Applying The Virtual Fields Method 

To The Identification Of Elasto-Plastic Constitutive Param-

eters. Int. J. Plasticity, 22:602-627, 2006.

[11]	 Sutton, M.A. - Deng, X. - Liu, J. - Yang, L.: Determination of 

Elastic-Plastic Stresses And Strains From Measured Surface 

Strain Data. Experimental Mechanics, 36(2):99–112, 1996.

[12]	 http://books.google.com/books?id=52v7jea3aqic&pri

ntsec=frontcover&dq=matlab&hl=sk&sa=x&ei=11tst4-

nky6l4gtqlsm_ag&ved=0cdgq6aewaq#v=onepage&q=ma

tlab&f=true

[13]	 Swift, H.W.: “Plastic Instability Under Plane Stress”, Journal Of 

The Mechanics And Physics Of Solids, Vol. 1, 1952, Pp. 1-18.

[14]	 Wang, J. - Levkovitch, V. - Reusch, F. - Svendsen, B.: Modeling 

And Simulation Of Directional Hardening In Metals During 

Non-Proportional Loading; Journal Of Materials Processing 

Technology 176, 2006, 430–432.


