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ABSTRACT
Rotating machines play a strategic role in a manufacturing process; it is the case of 
a cement mill. These machines are made of fragile organs (bearings and gears, etc.) 
subjected to significant mechanical stresses and harsh industrial environments. Im-
proving productivity through better control of the production tool through its auto-
mation, although by controlling its availability; automation must be associated with a 
maintenance strategy that will ensure a more availability. However, many techniques 
available currently require much expertise to successfully implement; it requires new 
techniques that allow relatively unskilled operators to make reliable decisions with-
out knowing the mechanism of system and analyzing the data. The artificial neural 
networks (ANN) are suitable for this type of problem diagnosis using the classification 
method.
This article discusses the automation of isolated diagnosis faults of bearings and gears 
in a gear unit DMGH25.4 of cement mill by coupling spectral analysis vibration-neural 
networks.

1. Introduction 
	 Bearings and gears are strategic components of rotating machinery, they ensure the 
transmission of mechanical forces and the rotation of the shaft, but they are the most 
fragile. This type of transmission main vibrates which shocks produced by contacting 
of gear teeth.
	 In practice, a wholesome gearing is not ideal due to geometric differences, and has 
a spectrum consisting of gearing harmonics. When the two wheels has a tooth dete-
riorated, there is a shock to the periodic frequency of rotation of the wheel concerned, 
the corresponding spectrum shows not only the frequency of gearing above, but also 
a comb rays whose pitch corresponding at this frequency of rotation [1]-[3], [7]-[9], 
[11], [12].
	 A new bearing in excellent working condition produces low amplitude vibrations 
looks to random noise. During the apparition of damage, a pulse occurs each time the 
defect participates in contact. The damage has a frequency characteristic which de-
pends on the geometry of the bearing and the location of spalling (on the inner ring, 
outer ring, or the ball) [12]. However, the amplitudes of the vibrations induced defects 
are not very high. They are embedded among the most energy system components 
such as gears or those related to an imbalance. The spectrum of an acceleration mea-
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surement of a bearing with a defective bearing has 
a higher level in the high frequency band (of 1 KHz 
to 10 KHz), and the sidebands around frequencies 
predominate (modulation phenomena on signals) 
[1], [11].
	 Therefore these vibrations occupy a privileged 
place among the parameters to be considered in 
making a diagnosis. Whenever a fault participates 
in a contact, change the vibration characteristics 
of the system. By analyzing the acceleration mea-
surements from an accelerometer, we can identify 
and quantify these changes in order to establish a 
relationship between the measurements and the 
type of fault, which will use as signatures for fault 
diagnosis system.
	 However, many techniques available presently 
require monitoring of much expertise to apply 
them successfully. It requires new techniques that 
allow relatively unskilled operators to make reli-
able decisions without knowing the mechanism of 
system and analyze the data. The literature review 
showed the effectiveness of artificial neural net-
works using the classification method to meet this 
function [9]. Classifications can be produced either 
entirely from characteristics of experimental sig-
nals, either from models generated by the network 
to provide an answer. In the category of networks 
operates from experimental signals exist multilayer 
networks. For them, the forms extracted from mea-

sures must be carefully chosen to be representa-
tive of the diagnostic information [4], [5], [10], [13], 
[14].
	 In this paper we deal with the application of 
artificial neural networks for automated fault di-
agnosis isolated bearings and gears in a gear 
unit DMGH25.4 of a cement mill. In section II we 
describe the system. In section III we present the 
measures companions. In section IV we present vi-
bration analysis illustrating the influence of defects 
on the structure of signals. Finally, in section V we 
present the application of artificial neural networks 
ANN for isolated diagnosis faults of bearings and 
gears system.

2. Description of the System
2.1 Description of cement mill

	 The cement mill flender DMGH of the Algerian 
cement company ACC is a horizontal ball mill, 
driven by lateral crown fig. 1. It receives the clinker, 
gypsum and possibly additional materials; load-
ing is performed by a bucket chain to the input of 
the machine. This mixture is generally pre-crushed 
with captured material and repressed by the sepa-
rator, using steel balls placed inside the rotating 
grinder; then the whole is supported by an endless 
screw, an elevator or another transport device, to 
be processed downstream [6].

 

Fig. 1: Description of cement mill DMGH25.4

It consists of a main motor; a tacking; a grinder 
DMGH; a gear unit horizontal.

2.2 Gear unit DMGH 25.4
Fig. 2 shows the gear unit Flender DMGH25.4, 
which driven by a main motor through elastic cou-
pling RUPLEX RLS 800. In order to move the grinder 

on a desired position, the gear unit is connected 
to a tacking with a motor (auxiliary motor) and a 
brake capable of blocking the grinder on any posi-
tion. The kinematic characteristics of the gear unit 
are [6]:
The speed of the high speed shaft is 16.57 Hz.
The speed of the intermediate shaft is 7.27 Hz.
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The speed of the output shaft is 2.05 Hz.
G9H speed grinder is 0.256 Hz.

 

Fig. 2: Gear unit flender DMGH 25.4

Table1 presents the technical data of the gear unit 
[6].

Table 1: Technical data of the gear unit

Mark Type Module (mm) Power (KW)

Flender DMGH 25.4 25.4 4551

Speed (T/mn) Weight (Kg) Report teeth input shaft / 
intermediate

Report teeth intermediate 
shaft / output

990 / 122.30 35000 25 / 57 20 / 71

Report teeth  
pinion / crown

Bearings of High speed 
shaft HSS

Bearings of output shaft Bearings of intermediate 
shaft

31 / 248 2×22248 CC / N1W33C3 
QJ1244N2MA

2×23264CAC / W33 
2×TOR F3164-MCAB

2×TOR F3164-G

3. Companions Measures
	 This study interest in the isolated faults bearings 
and gears (in our study we limit ourselves to fo-
cus on the wear of the outer ring of the bearing 
QJ1244 N2MA and a tooth deterioration of the in-
termediate pinion).
	 To analyze the vibrations generated by the organs 
of the gear unit, the measurements were carried 
out in three directions (axial, horizontal, vertical) in 
eight points’ shaft bearing using an accélomètre 
A0760GP SNP66223. Signal acquisition was made 
by a measuring device CSI 2130 machinery health 
vibration analysis (Fig. 3), with a sampling time  
Te = 0.78 Hz. This device not allows only receiving 
signal from the accelerometer to process the signal 
or the spectrum calculating acceleration, but also 
to perform the integration to obtain the informa-
tion in the speed mode. Spectral analysis was done 
using the AMS Suite.
	 Table 2 gives the characteristics of SKF bearing 
QJ 1244 N2MA.

 

Fig. 3: CSI 2130 analyzer.

Table 2: Characteristics of SKF bearing QJ 1244 N2MA

Number of 
balls 

Ball  
diameter

Piste  
diameter

Contact 
angle

15 57.15 mm 310 mm 45 °
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	 After calculation, the frequencies typical defects 
SKF QJ 1244 N2MA (Table 3) and meshing is [1]:

Component fault Fault frequency  (Hz)

FC         shaft 1-IB 7,20

FRB       shaft 1-IB 44,17

FEPB     shaft 1-IB 100,85

FIPB      shaft 1-IB 131,08

Where: 
FC: fault cage;		  FSB: fault ball
FEPB: fault outer ring;	 FIPB: fault inner ring.

Meshing frequency shaft 1/ Shaft 2: 414, 17 Hz
Meshing frequency shaft 2 / Shaft 3: 145, 32 Hz
Meshing frequency shaft 2 / Shaft 4: 145, 32 Hz
Meshing frequency shaft 3 and crown 63.45 Hz.

4. Vibration Analyses
	 Measurements of Level 1 (RMS) are not always 
sufficient for faults location. To locate faults, the 
spectra points will be assessed in three directions. 
Fig. 4 shows the vibration spectrum of the image of 
point 2 along the three directions in the frequency 
range [0-10000KH] with acceleration (g).

Table 3: The frequencies typical defects SKF QJ 1244 N2MA

 

 

Fig. 4: Spectrum signals of point 2 with and without fault

Fig. 5 shows the spectrum envelope with and with-
out fault, which allow determining the kinematic 
characteristic of the fault.

 

Fig. 5: Spectrum envelope vibration signals of point 2 with and 

without fault.

	 We observe that the specters are flattened in the 
absence of fault; in contrast, we observe that peaks 
shocks are the presence of the defect. The fault is 
due to the wear of the bearing outer ring QJ1244 
N2MA, because we observe peaks shocks at high 
frequencies close to the frequency of passage of 
the outer race defect 
M = FEPB shaft1-IB.
	 It is noted that reasoning on the signal amplitude, 
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Fig. 6: Spectrum signal of point 4 with and without fault.

	 The signal shows peaks representing the partici-
pation of the damaged tooth meshing.

5. Automation Diagnosis Using Neural Networks
In the following, we apply the approach of neu-
ral networks on a set of real measurement data 
QJ1244 ball bearing and pinion of the intermediate 
shaft with or without faults (wear of the outer ring 
and fracture of a tooth of the intermediate pinion).

5.1 Construction of the block of ANN
	 The neural network we have chosen is a network 
that uses multilayer retro propagation algorithm 
for learning. This method gave good results in 
many applications [4]. To apply it suffices to have 
the input data and output data.
     Stages of construction and validation of the neu-
ral network are divided into three phases:

5.1.1 Choice of network inputs
	 The selected inputs are the eight amplitude val-
ues of the spectrum of accelerations in three direc-
tions for point 2 and the eight values in the hori-

the signature of bearing faults do not propagate 
across the entire mechanical system. The faults of 
bearing cause an increase of the acceleration am-
plitude in the bearing where they are housed.  In-
deed, in the case of important defects, their effect 
may affect neighboring bearings driven by the 
same shaft at very high speeds. The accelerations 
measured on another shaft (in association with the 
support shaft gear fault rolling) are not affected by 
the damage.
	 The following figure shows a fault meshing (de-
terioration of a tooth of the pinion of the interme-
diate shaft (horizontal measurement point 4)).

 

zontal direction for the point 4; the latter has 32 
inputs of the input layer that are sampled values of 
acceleration specters (Fig. 7). 

 

Fig. 7: Diagram of the diagnostic system by neural network.

5.1.2 Choice of network outputs
	 Our network has three outputs because in our 
case we have been considering faults are not many 
(see Fig. 7). We associate each fault a code, i.e. each 
fault is represented by the three output neurons 
(see Table 4).
	 When detecting of a fault, the network must in-
dicate any binary number (e.g. 100) at its output, 
which corresponds to this type of fault (wear of the 
outer ring bearing QJ1244 N2MA).  In other word 
each output of the network has a single digit is 1 
or 0.

Table 4: Classification of types of faults horizontal mill DMGH 

25.4.

Category Type of fault Symbol Code
S1   S2   S3

1 Faultless NF 0      0     0

2 wear of the 
outer ring  
QJ1244

WBQJ1244 1      0     0

3 deteriora-
tion of a 
tooth of the 
intermedia-
te pinion

DTIP 0      1     0

5.1.3 Learning and test neural network selected
	 The network used is a multi-layer network (Fig. 
8), comprising an input layer corresponding to the 
retina, an output layer corresponding to the deci-
sion, and a hidden layer. The number of neurons in 
each layer is given by Table 5. The selected network 
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is entrained by the retro propagation algorithm.

Table 5: Number of neurons in each layer.

Network 
constructed

Input layer Hidden layer Output layer

Numbers of 
neurons

20 4 3

	 We made an automatic learning using MATLAB 
(SIMULINK) until the smaller squared error. The 
mean square error is the smallest obtained after 19 
iterations equal 2.0633E-11 (Fig. 9).

 

Fig. 9: Diagram of the diagnostic system by neural network.

 

Fig. 8: Structure of the network selected.

	 Once the neural network is constructed and its 
learning achieved satisfactory performance, we 
moves to step test by examples to the input of the 
network In fact, these examples belong to two da-
tabases, the first being the learning base and the 
second is based on tests which we proceed to test 
the network capacity to recognize examples not 
learned. This last operation is used to estimate the 
capacity generalization of the network (see Fig. 10). 
The tests are performed according to the following 
procedure: sane system, then default 1, sane sys-
tem, then default 2, sane system, then fault test not 
learned, and that for a period of time 2s for each test.
	 It is evident that the tests of the neural network 
on the learned examples (Fig. 11) have given better 
results, because all types of running (anomalies and 
normal running) were identified exactly by the net-
work, this can be explained by the results obtained 

Fig. 11: Graphical representation testing the Artificial Neural Net-

work (ANN).
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in the learning phase of the network (including the 
value of the mean square error is close to zero).
	 Regarding the network test on examples that 
have not been learned in the learning phase, we 
tested the network by a signal due to wear of the 

outer ring QJ 1244, its result is presented in fig. 10.
	 From the results obtained in the testing phase, 
we found that the outputs of the network evolve 
according to the desired output predetermined be-
fore.

Fig. 10: Simulation test Neural Network.

 

6. Conclusion
	 Measures of Level 1 (RMS) are not always sufficient 
for fault location.  To locate faults, the spectral analy-
ses of the measurement points were made:
In presence of a fault of the bearing outer ring we 
observe peaks shock at high frequencies near the 
frequency of the passage of the defect of the outer 
ring.
In presence of a fault gear (deterioration of a 
tooth) shows the corresponding spectrum of a comb 
lines which the pitch corresponds to the rotational 
frequency.
	 The difficulty of interpretation of a form, value, 
makes delicate operations of monitoring. The auto-
mation of this process by the neural network hidden 
layer with retro propagation learning gave correct 
results. This work has validated the performance of 
neural networks for a classification problem.
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