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ABSTRACT
Aim of the paper is to investigate the unsteady boundary layer flow of an incompress-
ible micropolar fluid over a stretching porous sheet when the sheet is stretched in 
its own plane. The stretching velocity is assumed to vary linearly with the distance 
along the sheet. Two equal and opposite forces are impulsively applied along  axis so 
that the sheet is stretched, keeping the origin fixed in a micropolar fluid. The govern-
ing non-linear equations and their associated boundary conditions are first cast into 
dimensionless form by a local non-similarity transformation. The resulting equations 
are solved numerically using the Adams- predictor corrector method for the whole 
transient from the initial state to final steady- state flow. Numerical results are obtained 
and a representative set is displaced graphically to illustrate the influence of the vari-
ous physical parameters on the velocity profiles, microrotation profiles as well as the 
Skin friction coefficient for various values of the material parameter K. It is found that 
there is a smooth transition from the small- time solution to the large- time solution. 
Results for the local skin friction coefficient are presented in table as well as in graph.

1. Introduction 
	 The fluid dynamics over a stretching surface is important in extrusion process. The 
production of sheeting material arises in a number of industrial manufacturing pro-
cess and includes both metal and polymer sheets. Examples are numerous and they 
include the cooling of an infinite metallic plate in a cooling bath, the boundary layer 
along material handling conveyers, the aerodynamic extrusion of plastic sheets, the 
boundary layer along a liquid film in condensation process, paper production, glass 
blowing, metal spinning, and drawing plastic films, to name just a few. The quality of 
the final product depends on the rate of heat transfer at the stretching surface. A com-
prehensive review of micropolar fluids mechanically has been presented by Ariman et 
al [1]. Since the pioneering study by Crane [2] who presented an  analytical solution 
for the steady two – dimensional stretching of a surface in a quiescent fluid, many au-
thors have considered various aspects of this problem and obtained similar solutions. 
Some mathematical results were presented by many authors, and a good number of 
references can be found in the papers by Magyari and Keller [8,9]. Sriramulu et.al [14] 
studied steady flow and heat transfer of a viscous incompressible fluid through porous 
medium over a stretching sheet.

On the other hand, it is well known that the theory of micropolar fluids has gener-
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ated a lot of interest and many flow problems have 
been studied. The theory of micropolar fluids was 
originally developed by Eringen [3,4] and has now 
been applied in the investigation of various fluids. 
The theory takes into account the microscopic ef-
fects arising from the local structure and micro-
motions of the fluid elements and provides the ba-
sis for a mathematical model for non-Newtonian 
fluids which can be used to analyze the behavoiur 
of exotic lubricants, polymers, liquid crystals, ani-
mal bloods and colloidal or suspension solutions, 
etc. Since introduced by Eringen many research-
ers have considerd various problems in micropolar 
fluids. Nazar et.al [10] studied the stagnation point 
flow of a non- Newtonian micropolar fluids with 
zero vertical velocity at the surface or heat gen-
eration. Rajeshwari and Nath [12] studied unsteady 
flow over a stretching surface in a rotating fluid, 
Noor [11] investigated heat transfer from a stretch-
ing sheet.
	 Guram and Smith [6] investigated the stagnation 
flows of micropolar fluids with strong and weak 
interactions. They obtained numerical results us-
ing a fourth order Runge – Kutta method. Gorla 
[5] obtained numerical results by a Runge – Kutta 
method for the micropolar boundary layer flow at 
a stagnation point on a moving wall. Heat transfer 
over a stretching surface with variable surface heat 
flux in micropolar fluids and MHD stagnation point 
flow towards a stretching vertical sheet in a micro-
polar fluid is studied by Ishak et al. [7].  Recently Na-
zar et al [13] studied the unsteady boundary layer 
flow of an incompressible micropolar fluid over a 
stretching sheet. They solved numerically using 
Keller-box method. 
	 The purpose of the present paper is to study the 
porous medium effects on the unsteady boundary 
layer flow of an incompressible micropolar fluid 
over a stretching sheet when the sheet is stretched 
in its own plane. A numerical solution is obtained 
for the governing momentum using the Adams 
predictor-corrector method.

2. Problem formulation and basic equations
	 Consider the flow of an incompressible micro-
polar fluid in the region y > 0 driven by a plane 
surface located at y = 0 with a fixed end at x = 0.  
It is assumed that the surface is stretched in the  
x - direction such that the  x - component of the 
velocity varies linearly along it, i.e. u

w
(x)=cx, where 

	 Subject to the initial and boundary conditions

c is an arbitrary constant and y > 0. The simplified 
two - dimensional equations governing the flow in 
the boundary layer of a steady, laminar and incom-
pressible micropolar fluids are.
	 The governing equations of continuity, momen-
tum under the influence of externally imposed 
transverse magnetic field in the boundary layer 
laminar and incompressible micropolar fluids are;
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where u and v are the velocity components along 
the x - and y - axes, respectively, t is time, N is the 
microrotation or angular velocity whose direction 
of rotation is in the x - y plane, n is dynamic vis-
cosity, t is density, j is microinertia per unit mass,   
c is spin gradient viscosity and k is vortex viscos-
ity.  Further, n is a constant and 0 ≤ n ≤ 1. The case 
n = 0, which indicates N = 0 at the wall represents 
concentrated particle flows in which the microele-
ments close to the wall surface are unable to rotate. 
This case is also known as the strong concentration 
of microelements. The case n = 1/2 indicates the 
vanishing of anti – symmetric part of the stress ten-
sor and denotes weak concentration of microele-
ments. The case n = 1 is used for the modeling of 
turbulent boundary layer flows. We shall consider 
here both cases of n = 0 and n = 1/2.
	 We introduce the new variables
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	 Where W is the stream function defined in the 
usual way as
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Substituting variables (5) in to (2) and (3) gives
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Where K=k/n is the material parameter. Here c and  
are j assumed to be given by k j k j

2
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=  respectively. The boundary conditions (4) be-
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	 The physical quantity of interest in this problem is 
the skin friction coefficient C

f
 which is defined as
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	 Further, we can obtain some particular cases of 
this problem.
A.	Early Unsteady Flow
     For early unsteady flow 0< x <<1 we have p ≈ 0, 
so (6) and (7) reduce in the leading order approxi-
mation to
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B.Final steady- state Flow 
	 For this case, p = 1 and (6) and (7) take the follow-
ing forms:
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	 Subject to the boundary conditions (14).

3. Method of solution
	 Converting into a system of five first order 
equations, we have at p + Dp, , ,y f y g1 4" "] g  
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	 Early unsteady flow is obtained by solving these 
equations with p = 0. For p > 0, the above equa-
tions reflect a fully implicit scheme with respect 
to  p. In both cases, assuming ,y 03 p a=] g  and 
,y 05 p b=] g , the above system is solved up to  

max 3.h ] g .
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	 This procedure converging in about three itera-
tions giving correct values of a and b. The system 
of Ordinary differential equation is solved by Ad-
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Fig. 1: Velocity distribution of initial flow (p=0) and early unsteady 

flow (0<p<<1) for various K with n=0.

Fig. 2: Velocity distribution of initial flow (p=0) and early unsteady 

flow (0<p<<1) for various K with n=1/2.

Fig. 3: Velocity distribution of final steady- state flow (p=1) for vari-

ous K with n=1/2.

Fig. 4: Velocity distribution of final steady- state flow (p=1) for vari-

ous K with n=0.

ams predictor- corrector methods of fourth or-
der. Accuracy is ensured by solving with different 

., ,maxp h hD D

4. Results and disscussion
	 The transformed equations (6) and (7) satisfying 
the boundary conditions (8) were solved numeri-
cally using the Adams predictor-corrector method 
for several values of the material parameter K. Nu-
merical results for Skin friction coefficients, the ve-
locity distribution and microrotation distribution are 
shown graphically.
	 To validate our method we have compared the 
Skin friction coefficients ReC /

f x
1 2  values with [14] is 

shown in Table, there is very good agreement be-
tween the results when we solved fully unsteady 
boundary layer equations and final steady state 
equations.  
	 Computations have been carried out for various 
values of the n and the material parameters K are 
represented. The velocity distribution of initial flow 
(p=0) and unsteady flow (0≤p≤1) for various values 
of K and n is shown. Figs.1, 2 show the resulting di-
mensionless velocity profiles for various values of K 
with n=0 and n=1/2 respectively. From both the fig-
ures it is observed that the velocity boundary layer 
thickness increases with the increasing values of K, 
for both the cases n=0 and n=1/2. The figs. 3, 4 rep-
resent for final steady state flow (p=1) for the cases 
n=0 and n=1/2, respectively. It is observed that the 
velocity increases with the increase of K. The veloc-
ity distribution of fully developed unsteady flow 
(0<p<1) and final steady state flow (p=1) is repre-
sented in the figs. 5, 6 for the cases n=0 and n=1/2, 
respectively. These figures show that the velocity 
profiles corresponding to increasing of p (0≤p≤1)  
approach the final steady profile corresponding to 
p=1. It has seen that there is a smooth transition 
from small time solution (p=0) to large time solu-
tion (p=1). 
	 The effect of porous parameter f on velocity dis-
tribution of initial flow and early unsteady flow (  for 
various (0<p≤1) values with n=0 and K=0 is shown 
in Fig. 7 and the velocity distribution of final steady 
state flow (p=1) for various f values with K=1, n = 
0 is shown in Fig. 8. It is obvious that existence of 
porous media f accecelerates the velocity in both 
the cases. The magnetic field effect is more in final 
steady flow.
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Fig. 5: Velocity distribution of fully developed unsteady flow for 

K=1 when n=0.
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Fig. 6: Velocity distribution of fully developed unsteady flow for 

K=1 when n=1/2.
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Fig. 7: Velocity distribution of initial flow (p=0) and early unsteady 

flow (0<p≤1) for various f  with n=0  and K=0.
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Fig. 8: Velocity distribution of final steady- state flow (p=1) for vari-

ous f  with n=0  and K=1.
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Fig. 9: Micro rotation distribution of final steady – state flow (p=1) 

for various K when n=1/2.
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Fig. 10: Micro rotation distribution of final steady – state flow 

(p=1) for various K when n=0.
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Fig. 11: Micro rotation distribution of fully developed unsteady 

flow for n=0  and K=1.
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Fig. 12: Micro rotation distribution of early unsteady flow 

(0<p<<1) for various K with  n=1/2.
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Fig. 13: Microrotation distribution of fully developed unsteady flow 

for n=1/2  and K=1.

microrotation distribution for various values of K, n 
for steady state and unsteady state flow. The micro-
rotation distribution of final steady state flow (p=1) 
is increases with the increase of the material param-
eter K is observed from Fig. 9 when n=0. The micro-
rotation distribution of final steady state flow (p=1) 
with n=1 is shown in Fig. 10 from which the micro-
rotation decreases as K increases in the vicinity of 
the plate where as it increases as one moves away 
from it. Fig. 11 represents the microrotation distribu-
tion of fully developed unsteady flow for n=0 and   
K=1 for 0<p≤1. It is noticed that the microrotation 
distribution as parabolic distribution and increases 
with the increase of p. Fig. 12 shows that microro-
tation distribution of early unsteady flow (0<p≤1) 
for various K values with n=1/2. The microrotation 
distribution decreases as K increases near the plate 
but reverse phenomena is observed as one moves 
away from the plate. The microrotation distribution 
of fully developed unsteady flow when K=1 and 
n=1/2 and final steady state flow (p=1) is shown in 
Fig.13. The microrotation distribution increases near 
the plate while, the reverse happens far away the 
plate with the increase of  p is observed. 
	 Figs.14,15 is drawn for microrotation distribution 
for final steady state flow (p=1) and fully developed 
unsteady flow with K=1, n=0 for different porous 
parameter f. Due to the porous media effect the mi-
crorotation distribution is decreases near the plane 
and reverse phenomena is observed when it moves 
far away. It can be seen there is a cross flow at h=5.
	 The Skin friction coefficient ReC /

f x
1 2  with p for var-

ious values of K is drawn when n=0 in Fig. 16 and   in 
Fig.17. It can be seen that the values of  decreases as 
K increases.
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Fig. 14: Micro rotation distribution of final steady-state flow (p=1) 

for various f  when K=1, n=0.
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Fig. 15: Micro rotation distribution of fully developed unsteady 

flow for various of  f with K=1,  n=0.
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Fig. 16: Variation with p of the skin friction coefficient for various 
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5. Conclusion
	 It is clear from the figs that the microrotation ef-
fects are more pronounced for n=1/2 when com-
pared to those of n=0. The microrotation profile for 
n=0 is different as compared to it has a parabolic 
distribution when n=0, where as it has continuously 
decreasing when n=1/2. 
	 The values of the Skin friction coefficients for the 
final steady flow are shown in Table1. It is noticed 
that due to impulsive motion, the skin friction co-
efficients as large magnitude (absolute value) for 
small time (x≈0 or p≈0) after the start of the mo-
tion, and decreases monotonically and reaches the 
steady state value at p=1 ( )" 3x .

Table 1: Values of the skin friction coefficient ReC /
f x

1 2  for various-

values of K and h when p=1.

 k/h         0 1/2

0 -1.0043 -1.0043

1 -1.3952 -1.24005

2 -1.6635 -1.4532

4 -2.0092 -1.8105

6. References
[1]	 Ariman T, Turk M A and Sylvester N.D  Microcontinum fluid 

mechanics-a  review”, Int j Eng sci,1vol 1, 1973, p. 905-930.

[2]	 Crane, L.J Flow Past a stretching plane,JournalofAppliedM

athematicsand Physics (ZAMP),Vol, 21, 1970. p. 645-647.

[3]	 Eringen,A.C Simple micropolar fluids. Int. J. Engng. Sci.2. 

1964. p.205.

[4]	 Eringen, A.C,Theory of micropolar fluids. J. Math. Mech 16, 

1966.p.1-18.

[5]	 Gorla, R. S. R Int. J. Engng. Sci 21, p. 25. 1983.

[6]	 Guram G. S. and A. C. Smith, Comp. Maths. With Appls 6, 

P.213. 1980.

[7]	 Ishak, A. Nazar, R. and I. Pop, Heat transfer over a stretching 

surface with variable surface heat flux in micropolar fluids, 

Phys. Lett: A 372, p. 559- 561. 2008.[6] 

[8]	 Magyari E. and B. Keller Heat and Mass Transfer in the 

BoundaryLayers on an ExponentiallyStretching Continu-

ous  Surface, Journal of Physics  D:  Applied  Physics 32,        

1999.p. 577-586.

[9]	 Magyari E. and Keller B. Exact Solutions for Self – Similar 

Boundary–Layer Flows induced by Permeable Stretching  

Surfaces, European Journal of Mechanics B – fluids 19, 

2000, p.109-122. 

[10]	 Nazar, R, Amin, N, Filip, D and Pop I,Stretching point flow 

of a Micropolar Fluid towards a stretching  sheet, Int . J. 

non- Linear Mech 39, 2004, p1227-1235.

[11]	 Noor, A, Heat transfer from  a  stretching sheet, Int J Heat 

and  Mass Transfer.4, 1992, P. 1128- 1131.

[12]	 Rajeshwari V and Nath G Unsteady flow over a stretch-

ing surface in a rotating fluid Int j Eng sci  30, No 6, 1992, 

p.747-756.

[13]	 Roslinda Nazr, Anuar Ishak, and Ioan PopUnsteady Bound-

ary Layer Flow Over a Stretching Sheet in a Micropolar Flu-

id, International Journal of Mathematical, Physical          and 

Engineering Sciences 2( 3), 2008. p.161-165.

[14]	 Sriramulu, A, Kishan, N and Anadarao, J, Steady flow 

and heat transfer of a  viscous incompressible fluid flow 

through porous medium over a stretching sheet. Journal 

of Energy, Heat and Mass Transfer 23, 2001, p.  483-495.


